%0 Journal Article %T Molecular Docking Assessment of Efficacy of Different Clinically Used Arsenic Chelator Drugs %A Durjoy Majumder %A Sayan Mukherjee %J Journal of Computational Medicine %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/396768 %X Arsenic contamination of ground water has become a global problem affecting specially, south-east Asian countries like Bangladesh and eastern parts of India. It also affects South America and some parts of the US. Different organs of the physiological system are affected due to contamination of inorganic arsenic in water. Animal studies with different chelators are not very conclusive as far as the multi/differential organ effect(s) of arsenic is concerned. Our docking study establishes the molecular rationale of blood test for early detection of arsenic toxicity; as arsenic has a high affinity to albumin, a plasma protein and actin, a structural protein of all cells including Red Blood Cells. This study also shows that there is a little possibility of male reproductive organs toxicity by different forms of inorganic arsenic; however, female reproductive system is very much susceptible to sodium-arsenite. Through comparative analysis regarding the chelating effectiveness among the available arsenic chelator drugs, meso-2,3 dimercaptosuccinic acid (DMSA) and in some cases lipoic acid is the most preferred choice of drug for removing of arsenic deposits. This computational method actually reinforces the clinical finding regarding DMSA as the most preferred drug in removal of arsenic deposits from majority of the human tissues. 1. Introduction The source of arsenic poisoning comes through drinking water and has now become a major concern throughout the globe. It affects a large population of Bangladesh [1] and eastern part of India. Arsenic occurs in nature in both organic and inorganic forms; the latter being more toxic. Inorganic form combines mainly with oxygen and sulfur. In drinking water, it is mainly present as arsenious acid in trivalent [As(III)] state [2]. Arsenic trioxide (ATO) (As2O3) dissolves in water under conditions dependent on pH, presence of redox chemicals, reducing bacteria, and so on to produce this arsenious acid [3]. Arsenic rarely occurs in the zero valent metalloid state and mostly occurs in the trivalent state and occasionally in the pentavalent state. Pentavalent arsenic compounds tend to decompose into trivalent state when ingested. Within physiological system, pentavalent arsenic uses ADP and uncouple oxidative phosphorylation to change to trivalent arsenic [4]. So, the main toxicity of inorganic arsenic comes from trivalent arsenic. The toxicity of trivalent arsenic [As(III)] arises from the fact that it binds to free thiol (¨CSH) groups in proteins, especially vicinal thiol groups [5]. Clinical reports suggest that arsenic %U http://www.hindawi.com/journals/jcm/2013/396768/