Background. The use of plasma frozen within 24?hrs is likely to increase. Whole blood (WB) and buffy coats (BCs) can be held for a few hrs or overnight before processing. Methods. Twenty-four bags of WB for plasma and 12 bags for platelet (PLT) concentrates were collected. The fresh frozen plasma (FFP) was prepared within 6?hrs. I-FP24 and II-FP24 samples were prepared either from leukodepleted WB that was held overnight or from WB that was held overnight before leukodepletion. The PLT concentrates (PCs) were prepared from BCs within 6?hrs (PC1) and within 18 to 24?hrs (PC2). The typical coagulation factors and some biochemical parameters were determined. Results. Compared to the FFP samples, the levels of FVII and FVIII in the I-FP24 and II-FP24 samples decreased significantly. The pH, Na+, LDH, and FHb levels differed significantly between II-FP24 and FFP. Compared to PC1, PC2 exhibited lower pH, pO2, and Na+ levels, a higher PLT count, and increased pCO2, K+, Lac, and CD62P expression levels. Conclusion. FP24 is best prepared from WB that was stored overnight at 4°C and then leukodepleted and separated within 24?hrs. PCs are best produced from BCs derived from WB that was held overnight at room temperature. 1. Introduction An important step in safeguarding the quality and safety of the blood supply is recruiting volunteer donors from low-risk populations and producing qualified blood and blood components. Volunteer donor recruitment is a challenging proposition worldwide. In China, it was particularly difficult before 1998. Traditional Chinese culture believes that the loss of even a small amount of blood has a substantial detrimental health effect. Some people also believe that blood donation is a disloyal action against one’s ancestors. Old cultural beliefs, combined with inadequate efforts to mobilize volunteer donors, have led to a chronic shortage of blood products in some areas of China [1]. Therefore, many blood centers have tried to prepare more blood components, such as platelet (PLT) concentrates (PCs), from whole blood (WB) to meet the need for blood products. WB units are generally held at ambient temperatures (20–24°C) when PCs will be prepared within 6?hrs of the blood collection. The United States Food and Drug Administration (FDA) guidelines during the early 1980s allowed the preparation of components at 20 to 24°C within 8?hrs of collection and a 5-day storage period for PCs. The impetus for extending the time to 8?hrs reflected an increased production demand for PCs and the limitations of the 6?hr period with respect to the
References
[1]
H. Shan, J. Wang, F. Ren et al., “Blood banking in China,” The Lancet, vol. 60, no. 9347, pp. 1770–1775, 2002.
[2]
G. Moroff, J. P. AuBuchon, C. Pickard, P. H. Whitley, W. A. Heaton, and S. Holme, “Evaluation of the properties of components prepared and stored after holding of whole blood units for 8 and 24 hours at ambient temperature,” Transfusion, vol. 51, supplement S1, pp. 7S–14S, 2011.
[3]
K. Serrano, K. Scammell, S. Weiss et al., “Plasma and cryoprecipitate manufactured from whole blood held overnight at room temperature meet quality standards,” Transfusion, vol. 50, no. 2, pp. 344–353, 2010.
[4]
S. Murphy and F. H. Gardner, “Effect of storage temperature on maintenance of platelet viability—deleterious effect of refrigerated storage,” The New England Journal of Medicine, vol. 280, no. 20, pp. 1094–1098, 1969.
[5]
K. M. Hoffmeister, T. W. Felbinger, H. Falet et al., “The clearance mechanism of chilled blood platelets,” Cell, vol. 112, no. 1, pp. 87–97, 2003.
[6]
V. Rumjantseva, P. K. Grewal, H. H. Wandall et al., “Dual roles for hepatic lectin receptors in the clearance of chilled platelets,” Nature Medicine, vol. 15, no. 11, pp. 1273–1280, 2009.
[7]
R. R. Vassallo and S. Murphy, “A critical comparison of platelet preparation methods,” Current Opinion in Hematology, vol. 13, no. 5, pp. 323–330, 2006.
[8]
E. Levin, B. Culibrk, M. I. C. Gy?ngy?ssy-Issa et al., “Implementation of buffy coat platelet component production: comparison to platelet-rich plasma platelet production,” Transfusion, vol. 48, no. 11, pp. 2331–2337, 2008.
[9]
W. P. Sheffield, V. Bhakta, C. Jenkins, and D. V. Devine, “Conversion to the buffy coat method and quality of frozen plasma derived from whole blood donations in Canada,” Transfusion, vol. 50, no. 5, pp. 1043–1049, 2010.
[10]
W. A. L. Heaton, P. Rebulla, M. Pappelettera, and W. H. Dzik, “Comparative analysis of different methods for routine blood component preparation,” Transfusion Medicine Reviews, vol. 11, no. 2, pp. 116–129, 1997.
[11]
S. Pérez-Pujol, M. Lozano, D. Perea, R. Mazzara, A. Ordinas, and G. Escolar, “Effect of holding buffy coats 4 or 18 hours before preparing pooled filtered PLT concentrates in plasma,” Transfusion, vol. 44, no. 2, pp. 202–209, 2004.
[12]
J. D. Roback, M. R. Combs, B. J. Grossman, and C. D. Hillyer, Eds., American Association of Blood Banks Technical Manual, AABB, Bethesda, Md, USA, 16th edition, 2008.
[13]
E. M. O'Neill, J. Rowley, M. Hansson-Wicher, S. McCarter, G. Ragno, and C. R. Valeri, “Effect of 24-hour whole-blood storage on plasma clotting factors,” Transfusion, vol. 39, no. 5, pp. 488–491, 1999.
[14]
R. Cardigan, A. S. Lawrie, I. J. Mackie, and L. M. Williamson, “The quality of fresh-frozen plasma produced from whole blood stored at 4°C overnight,” Transfusion, vol. 45, no. 8, pp. 1342–1348, 2005.
[15]
M. H. Yazer, A. Cortese-Hassett, and D. J. Triulzi, “Coagulation factor levels in plasma frozen within 24 hours of phlebotomy over 5 days of storage at 1 to 6°C,” Transfusion, vol. 48, no. 12, pp. 2525–2530, 2008.
[16]
S. Kleinman, B. Grossman, and P. Kopko, “A national survey of transfusion-related acute lung injury risk reduction policies for platelets and plasma in the United States,” Transfusion, vol. 50, no. 6, pp. 1312–1321, 2010.
[17]
E. A. Vogler and C. A. Siedlecki, “Contact activation of blood-plasma coagulation,” Biomaterials, vol. 30, no. 10, pp. 1857–1869, 2009.
[18]
H. Alhumaidan, T. Cheves, S. Holme, and J. Sweeney, “Stability of coagulation factors in plasma prepared after a 24-hour room temperature hold,” Transfusion, vol. 50, no. 9, pp. 1934–1942, 2010.
[19]
P. F. van der Meer, J. A. Cancelas, R. R. Vassallo, N. Rugg, M. Einarson, and J. R. Hess, “Evaluation of the overnight hold of whole blood at room temperature, before component processing: platelets (PLTs) from PLT-rich plasma,” Transfusion, vol. 51, supplement 1, pp. 45S–49S, 2011.
[20]
F. Q. Lu, W. Kang, Y. Peng, and W. M. Wang, “Characterization of blood components separated from donated whole blood after an overnight holding at room temperature with the buffy coat method,” Transfusion, vol. 51, no. 10, pp. 2199–2207, 2011.
[21]
P. F. van der Meer, J. A. Cancelas, R. Cardigan et al., “Evaluation of overnight hold of whole blood at room temperature before component processing: effect of red blood cell (RBC) additive solutions on in vitro RBC measures,” Transfusion, vol. 51, supplement 1, pp. 15S–24S, 2011.
[22]
M. F. Veale, G. Healey, and R. L. Sparrow, “Effect of additive solutions on red blood cell (RBC) membrane properties of stored RBCs prepared from whole blood held for 24 hours at room temperature,” Transfusion, vol. 51, supplement 1, pp. 25S–33S, 2011.
[23]
M. J. Dijkstra-Tiekstra, P. F. van der Meer, R. Cardigan et al., “Platelet concentrates from fresh or overnight-stored blood, an international study,” Transfusion, vol. 51, supplement 1, pp. 15S–24S, 2011.
[24]
S. J. Slichter, J. Corson, M. K. Jones, T. Christoffel, E. Pellham, and D. Bolgiano, “Platelet concentrates prepared after a 20- to 24-hour hold of the whole blood at 22°C,” Transfusion, vol. 52, no. 9, pp. 2043–2048, 2012.
[25]
L. McMillian, V. Hornsey, A. Morrison, O. Drummond, and C. Prowse, “Storage of whole blood for up to 24H and its effect on platelet concentrates,” Transfusion Medicine, vol. 19, supplement 1, article 20S, 2009.
[26]
R. Cardigan, P. F. van der Meer, C. Pergande et al., “Coagulation factor content of plasma produced from whole blood stored for 24 hours at ambient temperature: results from an international multicenter BEST Collaborative study,” Transfusion, vol. 51, supplement 1, pp. 50S–57S, 2011.