The prevalence of diabetes mellitus is rising all over the world. Uncontrolled state of hyperglycemia due to defects in insulin secretion/action leads to a variety of complications including peripheral vascular diseases, nephropathy, neuropathy, retinopathy, morbidity, and/or mortality. Large body of evidence suggests major role of reactive oxygen species/oxidative stress in development and progression of diabetic complications. In the present paper, we have discussed the recent researches on the biomarkers of oxidative stress during type 2 diabetes mellitus. 1. Introduction Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion and insulin action or both. The chronic hyperglycemia is associated with long-term damage, dysfunction, and failure of normal functioning of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels [1, 2]. Diabetes-specific microvascular disease is a leading cause of blindness, renal failure, and nerve damage [3]. The prevalence of diabetes is rising all over the world due to population growth, aging, urbanisation, and the increase of obesity due to physical inactivity. Unlike the West, where the older are most affected, diabetes in Asian countries is comparatively high in young to middle-aged people. All these complications have long-lasting adverse effects on a nation’s health and economy, especially for developing countries. As per estimate of the International Diabetes Federation (IDF), the total number of people in India with diabetes which was around 50.8 million in 2010 would be 87.0 million by 2030 [4]. Hyperglycaemia generates reactive oxygen species (ROS), which in turn cause damage to the cells in many ways. Damage to the cells ultimately results in secondary complications in diabetes mellitus [5, 6]. In the present paper, we have discussed the markers of oxidative stress in diabetes mellitus. The involvement of ROS in the aetiology and the development of late complications have also been addressed. The review further examines the main toxic effects of ROS on lipid, protein, glutathione metabolism, catalase, superoxide dismutases, and antioxidant capacity of plasma. 2. Diabetic Complications Diabetes is a major source of morbidity, mortality, and economic cost to the society. People with diabetes showed the risk of the development of acute metabolic complications such as diabetic ketoacidosis, hyperglycaemic hyperosmolar nonketotic coma, and hypoglycaemia [7, 8]. In addition to this, diabetics are also at risk of experiencing
References
[1]
American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 35, no. 1, pp. S64–S71, 2012.
[2]
F. Paneni, J. A. Beckman, M. A. Creager, and F. Cosentino, “Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I,” European Heart Journal, vol. 34, no. 31, pp. 2436–2443, 2013.
[3]
W. T. Cade, “Diabetes-related microvascular and macrovascular diseases in the physical therapy setting,” Physical Therapy, vol. 88, no. 11, pp. 1322–1335, 2008.
[4]
A. Ramachandran, A. K. Das, S. R. Joshi, C. S. Yajnik, S. Shah, and K. M. P. Kumar, “Current status of diabetes in India and need for novel therapeutic agents,” Journal of Association of Physicians of India, vol. 58, pp. 7–9, 2010.
[5]
J. V. Hunt, R. T. Dean, and S. P. Wolff, “Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing,” Biochemical Journal, vol. 256, no. 1, pp. 205–212, 1988.
[6]
M. Jaganjac, O. Tirosh, G. Cohen, S. Sasson, and N. Zarkovic, “Reactive aldehydes—second messengers of free radicals in diabetes mellitus,” Free Radical Research, vol. 47, no. 1, pp. 39–48, 2013.
[7]
P. English and G. Williams, “Hyperglycaemic crises and lactic acidosis in diabetes mellitus,” Postgraduate Medical Journal, vol. 80, no. 943, pp. 253–261, 2004.
[8]
G. U. Umpierrez, M. B. Murphy, and A. E. Kitabchi, “Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome,” Diabetes Spectrum, vol. 15, no. 1, pp. 28–36, 2002.
[9]
American Diabetes Association, “Economic consequences of diabetes mellitus in the U.S. in 1997,” Diabetes Care, vol. 21, no. 2, pp. 296–309, 1998.
[10]
R. A. DeFronzo and E. Ferrannini, “Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease,” Diabetes Care, vol. 14, no. 3, pp. 173–194, 1991.
[11]
A. Al-Khalifa, T. C. Mathew, N. S. Al-Zaid, E. Mathew, and H. Dashti, “Low carbohydrate ketogenic diet prevents the induction of diabetes using streptozotocin in rats,” Experimental and Toxicologic Pathology, vol. 63, no. 7-8, pp. 663–669, 2011.
[12]
A. Mezzetti, F. Cipollone, and F. Cuccurullo, “Oxidative stress and cardiovascular complications in diabetes: isoprostanes as new markers on an old paradigm,” Cardiovascular Research, vol. 47, no. 3, pp. 475–488, 2000.
[13]
G. M. Leung and K. S. Lam, “Diabetic complications and their implications on health care in Asia,” Hong Kong Medical Journal, vol. 6, no. 1, pp. 61–68, 2000.
[14]
B. Halliwell and J. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 4th edition, 2007.
[15]
K. B. Pandey, N. Mishra, and S. I. Rizvi, “Protein oxidation biomarkers in plasma of type 2 diabetic patients,” Clinical Biochemistry, vol. 43, no. 4-5, pp. 508–511, 2010.
[16]
E. C. Gomes, A. N. Silva, and M. R. de Oliveira, “Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 756132, 12 pages, 2012.
[17]
M. Freitas, A. Gomes, G. Porto, and E. Fernandes, “Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils,” Journal of Biological Inorganic Chemistry, vol. 15, no. 8, pp. 1275–1283, 2010.
[18]
V. J. Thannickal and B. L. Fanburg, “Reactive oxygen species in cell signaling,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 279, no. 6, pp. L1005–L1028, 2000.
[19]
C. K. Sen, “Antioxidant and redox regulation of cellular signaling: introduction,” Medicine and Science in Sports and Exercise, vol. 33, no. 3, pp. 368–370, 2001.
[20]
F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010.
[21]
A. Negre-Salvayre, R. Salvayre, N. Augé, R. Pamplona, and M. Portero-Otín, “Hyperglycemia and glycation in diabetic complications,” Antioxidants and Redox Signaling, vol. 11, no. 12, pp. 3071–3109, 2009.
[22]
M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005.
[23]
W. I. Sivitz and M. A. Yorek, “Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 12, no. 4, pp. 537–577, 2010.
[24]
A. P. Robertson, “Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42351–42354, 2004.
[25]
F. Folli, D. Corradi, P. Fanti et al., “The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach,” Current Diabetes Reviews, vol. 7, no. 5, pp. 313–324, 2011.
[26]
T. V. Fiorentino, A. Prioletta, P. Zuo, and F. Folli, “Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases,” Current Pharmaceutical Design, vol. 19, no. 32, pp. 5695–5703, 2013.
[27]
B. Halliwell and S. Chirico, “Lipid peroxidation: its mechanism, measurement, and significance,” American Journal of Clinical Nutrition, vol. 57, supplement 5, pp. 715S–724S, 1993.
[28]
L. Guo, Z. Chen, V. Amarnath, and S. S. Davies, “Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation,” Free Radical Biology and Medicine, vol. 53, no. 6, pp. 1226–1238, 2012.
[29]
V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free radicals, antioxidants and functional foods: impact on human health,” Pharmacognosy Reviews, vol. 4, no. 8, pp. 118–126, 2010.
[30]
S. A. Shodehinde and G. Oboh, “Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro,” Asian Pacific Journal of Tropical Biomedicine, vol. 3, no. 6, pp. 449–457, 2013.
[31]
M. J. Fowler, “Microvascular and macrovascular complications of diabetes,” Clinical Diabetes, vol. 26, no. 2, pp. 77–82, 2008.
[32]
R. R. Saddala, L. Thopireddy, N. Ganapathi, and S. R. Kesireddy, “Regulation of cardiac oxidative stress and lipid peroxidation in streptozotocin-induced diabetic rats treated with aqueous extract of Pimpinella tirupatiensis tuberous root,” Experimental and Toxicologic Pathology, vol. 65, no. 1-2, pp. 15–19, 2013.
[33]
K. B. Pandey and S. I. Rizvi, “Biomarkers of oxidative stress in red blood cells,” Biomedical Papers, vol. 155, no. 2, pp. 131–136, 2011.
[34]
S. A. Moussa, “Oxidative stress in diabetes mellitus,” Romanian Journal of Biophysics, vol. 18, pp. 225–236, 2008.
[35]
S. de M. Bandeira, G. da S. Guedes, L. J. S. da Fonseca, A. S. Pires, D. P. Gelain, and J. C. Moreira, “Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 819310, 13 pages, 2012.
[36]
J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991.
[37]
B. Ramesh, R. Karuna, R. S. Sreenivasa et al., “Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 11, pp. 895–900, 2012.
[38]
Z. Yang, V. E. Laubach, B. A. French, and I. L. Kron, “Acute hyperglycemia enhances oxidative stress and exacerbates myocardial infarction by activating nicotinamide adenine dinucleotide phosphate oxidase during reperfusion,” Journal of Thoracic and Cardiovascular Surgery, vol. 137, no. 3, pp. 723–729, 2009.
[39]
M. Singh and S. Shin, “Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review,” Indian Journal of Experimental Biology, vol. 47, no. 1, pp. 7–15, 2009.
[40]
B. S. Varashree and P. G. Bhat, “Correlation of lipid peroxidation with glycated haemoglobin levels in diabetes mellitus,” Online Journal of Health and Allied Sciences, vol. 10, no. 2, pp. 1–4, 2011.
[41]
A. C. F. Salgueiro, C. Q. Leal, M. C. Bianchini et al., “The influence of Bauhinia forficata Link sub sp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations,” Journal of Ethnopharmacology, vol. 148, no. 1, pp. 81–87, 2013.
[42]
D. Suzuki and T. Miyata, “Carbonyl stress in the pathogenesis of diabetic nephropathy,” Internal Medicine, vol. 38, no. 4, pp. 309–314, 1999.
[43]
R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990.
[44]
A. Sakul, A. Cumaoglu, E. Ayd?n, N. Ar, N. Dilsiz, and C. Karasu, “Age-and diabetes-induced regulation of oxidative protein modification in rat brain and peripheral tissues: consequences of treatment with antioxidant pyridoindole,” Experimental Gerontology, vol. 48, no. 5, pp. 476–484, 2013.
[45]
D. Gradinaru, C. Borsa, C. Ionescu, and D. Margina, “Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes,” Journal of Proteomics, vol. 13, pp. 181–184, 2013.
[46]
V. M. Monnier, “Intervention against the Maillard reaction in vivo,” Archives of Biochemistry and Biophysics, vol. 419, no. 1, pp. 1–15, 2003.
[47]
J. H. P. Barbosa, S. L. Oliveira, and L. T. Seara, “The role of Advanced Glycation End-products (AGEs) in the development of vascular diabetic complications,” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 52, no. 6, pp. 940–950, 2008.
[48]
M. A. Lal, H. Brismar, A.-C. Ekl?f, and A. Aperia, “Role of oxidative stress in advanced glycation end product-induced mesangial cell activation,” Kidney International, vol. 61, no. 6, pp. 2006–2014, 2002.
[49]
M. Kalousová, J. ?krha, and T. Zima, “Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus,” Physiological Research, vol. 51, no. 6, pp. 597–604, 2002.
[50]
S. de M. Bandeira, L. J. S. da Fonseca, G. da S. Guedes, et al., “Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus,” International Journal of Molecular Sciences, vol. 14, pp. 3265–3284, 2013.
[51]
K. B. Pandey and S. I. Rizvi, “Resveratrol may protect plasma proteins from oxidation under conditions of oxidative stress in vitro,” Journal of the Brazilian Chemical Society, vol. 21, no. 5, pp. 909–913, 2010.
[52]
V. Witko-Sarsat, M. Friedlander, C. Capeillère-Blandin et al., “Advanced oxidation protein products as a novel marker of oxidative stress in uremia,” Kidney International, vol. 49, no. 5, pp. 1304–1313, 1996.
[53]
I. Savini, M. V. Catani, D. Evangelista, V. Gasperi, and L. Avigliano, “Obesity-associated oxidative stress: strategies finalized to improve redox state,” International Journal of Molecular Sciences, vol. 14, no. 5, pp. 10497–10538, 2013.
[54]
A. Piwowar, M. Knapik-Kordecka, and M. Warwas, “AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 77, no. 2, pp. 188–192, 2007.
[55]
S. Bansal, D. Chawla, M. Siddarth, B. D. Banerjee, S. V. Madhu, and A. K. Tripathi, “A study on serum advanced glycation end products and its association with oxidative stress and paraoxonase activity in type 2 diabetic patients with vascular complications,” Clinical Biochemistry, vol. 46, no. 1-2, pp. 109–114, 2013.
[56]
F. Piarulli, G. Sartore, A. Ceriello et al., “Relationship between glyco-oxidation, antioxidant status and microalbuminuria in type 2 diabetic patients,” Diabetologia, vol. 52, no. 7, pp. 1419–1425, 2009.
[57]
A. Piwowar, “Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property,” Polski Merkuriusz Lekarski, vol. 28, no. 164, pp. 166–169, 2010.
[58]
S. C. Lu, “Glutathione synthesis,” Biochimica et Biophysica Acta, vol. 1830, no. 5, pp. 3143–3153, 2013.
[59]
C. J. Tsai, C. J. Hsieh, S. C. Tung, M. C. Kuo, and F. C. Shen, “Acute blood glucose fluctuations can decrease blood glutathione and adiponectin levels in patients with type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 98, no. 2, pp. 257–263, 2012.
[60]
S. I. Rizvi and S. Chakravarty, “Day and night GSH and MDA levels in healthy adults and effects of different doses of melatonin on these parameters,” International Journal of Cell Biology, vol. 2011, Article ID 404591, 5 pages, 2011.
[61]
A. Rahigude, P. Bhutada, S. Kaulaskar, M. Aswar, and K. Otari, “Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats,” Neuroscience, vol. 226, pp. 62–72, 2012.
[62]
V. Calabrese, C. Cornelius, V. Leso et al., “Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes,” Biochimica et Biophysica Acta, vol. 1822, no. 5, pp. 729–736, 2012.
[63]
Y. Din?er, T. Ak?ay, Z. Alademir, and H. Ilkova, “Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes,” Mutation Research, vol. 505, no. 1-2, pp. 75–81, 2002.
[64]
J. Das, V. Vasan, and P. C. Sil, “Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis,” Toxicology and Applied Pharmacology, vol. 258, no. 2, pp. 296–308, 2012.
[65]
C. Livingstone and J. Davis, “Targeting therapeutics against glutathione depletion in diabetes and its complications,” British Journal of Diabetes and Vascular Disease, vol. 7, no. 6, pp. 258–265, 2007.
[66]
D. Morris, M. Khurasany, T. Nguyen, J. Kim, F. Guilford, and R. Mehta, “Glutathione and infection,” Biochimica et Biophysica Acta, vol. 1830, no. 5, pp. 3329–3349, 2013.
[67]
R. V. Sekhar, S. V. Mckay, S. G. Patel et al., “Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine,” Diabetes Care, vol. 34, no. 1, pp. 162–167, 2011.
[68]
K. S. Tan, K. O. Lee, K. C. Low, A. M. Gamage, Y. Liu, and G. Y. Tan, “Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria,” Journal of Clinical Investigation, vol. 122, no. 6, pp. 2289–2300, 2012.
[69]
P. Chelikani, I. Fita, and P. C. Loewen, “Diversity of structures and properties among catalases,” Cellular and Molecular Life Sciences, vol. 61, no. 2, pp. 192–208, 2004.
[70]
K. Takemoto, M. Tanaka, H. Iwata et al., “Low catalase activity in blood is associated with the diabetes caused by alloxan,” Clinica Chimica Acta, vol. 407, no. 1-2, pp. 43–46, 2009.
[71]
L. Góth and J. W. Eaton, “Hereditary catalase deficiencies and increased risk of diabetes,” The Lancet, vol. 356, no. 9244, pp. 1820–1821, 2000.
[72]
M. Tiedge, S. Lortz, R. Monday, and S. Lenzen, “Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species,” Diabetes, vol. 47, no. 10, pp. 1578–1585, 1998.
[73]
L. Góth and M. Vitai, “Hypocatalasemia in hospital patients,” Clinical Chemistry, vol. 42, no. 2, pp. 341–342, 1996.
[74]
L. Góth, “Lipid and carbohydrate metabolism in acatalasemia,” Clinical Chemistry, vol. 46, no. 4, pp. 564–566, 2000.
[75]
I. Hwang, J. Lee, J. Y. Huh et al., “Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction,” Diabetes, vol. 61, no. 3, pp. 728–738, 2012.
[76]
L. Góth and N. W. Bigler, “Catalase deficiency may complicate urate oxidase (rasburicase) therapy,” Free Radical Research, vol. 41, no. 9, pp. 953–955, 2007.
[77]
L. Góth, Z. Tóth, I. Tarnai, M. Bérces, P. T?r?k, and W. N. Bigler, “Blood catalase activity in gestational diabetes is decreased but not associated with pregnancy complications,” Clinical Chemistry, vol. 51, no. 12, pp. 2401–2404, 2005.
[78]
H. Patel, J. Chen, K. C. Das, and M. Kavdia, “Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC,” Cardiovascular Dialectology, vol. 12, no. 1, pp. 142–146, 2013.
[79]
F. M. Faraci and S. P. Didion, “Vascular protection: superoxide dismutase isoforms in the vessel wall,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 8, pp. 1367–1373, 2004.
[80]
X. Wang, L. Tao, and C. X. Hai, “Redox-regulating role of insulin: the essence of insulin effect,” Molecular and Cellular Endocrinology, vol. 349, no. 2, pp. 111–127, 2012.
[81]
S. Davari, S. A. Talaei, H. Alaei, and M. Salami, “Probiotics treatment improves diabetes-induced Impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for Microbiome-gut-brain axis,” Neuroscience, vol. 240, pp. 287–296, 2013.
[82]
W. Beyer, J. Imlay, and I. Fridovich, “Superoxide dismutases,” Progress in Nucleic Acid Research and Molecular Biology, vol. 40, pp. 221–253, 1991.
[83]
H. Li, N. Xia, and U. F?rstermann, “Cardiovascular effects and molecular targets of resveratrol,” Nitric Oxide, vol. 26, no. 2, pp. 102–110, 2012.
[84]
T. D. Oury, B. J. Day, and J. D. Crapo, “Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability,” Laboratory Investigation, vol. 75, no. 5, pp. 617–636, 1996.
[85]
I. N. Zelko, T. J. Mariani, and R. J. Folz, “Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression,” Free Radical Biology and Medicine, vol. 33, no. 3, pp. 337–349, 2002.
[86]
T. J. Guzik, N. E. J. West, R. Pillai, D. P. Taggart, and K. M. Channon, “Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels,” Hypertension, vol. 39, no. 6, pp. 1088–1094, 2002.
[87]
H. Fujita, H. Fujishima, S. Chida et al., “Reduction of renal superoxide dismutase in progressive diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 20, no. 6, pp. 1303–1313, 2009.
[88]
C. Wang, S. Li, D.-J. Shang, X.-L. Wang, Z.-L. You, and H.-B. Li, “Antihyperglycemic and neuroprotective effects of one novel Cu-Zn SOD mimetic,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 14, pp. 4320–4324, 2011.
[89]
C. L. Fattman, L. M. Schaefer, and T. D. Oury, “Extracellular superoxide dismutase in biology and medicine,” Free Radical Biology and Medicine, vol. 35, no. 3, pp. 236–256, 2003.
[90]
J. Sandstr?m, L. M. Jonsson, H. Edlund, D. Holmberg, and S. L. Marklund, “Overexpression of extracellular-SOD in islets of nonobese diabetic mice and development of diabetes,” Free Radical Biology and Medicine, vol. 33, no. 1, pp. 71–75, 2002.
[91]
R. A. Kowluru, L. Atasi, and Y.-S. Ho, “Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 47, no. 4, pp. 1594–1599, 2006.
[92]
D. Giugliano, A. Ceriello, and G. Paolisso, “Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress?” Metabolism, vol. 44, no. 3, pp. 363–368, 1995.
[93]
K. He, X. Li, X. Chen et al., “Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice,” Journal of Ethnopharmacology, vol. 137, no. 3, pp. 1135–1142, 2011.
[94]
K. Shukla, P. Dikshit, M. K. Tyagi, R. Shukla, and J. K. Gambhir, “Ameliorative effect of Withania coagulans on dyslipidemia and oxidative stress in nicotinamide streptozotocin induced diabetes mellitus,” Food and Chemical Toxicology, vol. 50, no. 10, pp. 3595–3599, 2012.
[95]
C. H. Kim, “Expression of extracellular superoxide dismutase protein in diabetes,” Archives of Plastic Surgery, vol. 40, no. 5, pp. 517–521, 2013.
[96]
A. N. Lucchesi, N. T. Freitas, L. L. Cassettari, S. F. Marques, and C. T. Spadella, “Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease,” Acta Cirurgica Brasileira, vol. 28, no. 7, pp. 502–508, 2013.
[97]
S. I. Rizvi and P. K. Maurya, “Markers of oxidative stress in erythrocytes during aging in humans,” Annals of the New York Academy of Sciences, vol. 1100, pp. 373–382, 2007.
[98]
E. L. Schiffrin, “Antioxidants in hypertension and cardiovascular disease,” Molecular Interventions, vol. 10, no. 6, pp. 354–362, 2010.
[99]
M. Lodovicia, L. Giovannellia, V. Pitozzia, E. Bigaglia, G. Bardinib, and C. M. Rotellab, “Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control,” Mutation Research, vol. 638, no. 1-2, pp. 98–102, 2008.
[100]
P. J. Hisalkar, A. B. Patne, A. C. Karnik, M. M. Fawade, and S. S. Mumbare, “Ferric reducing ability of plasma with lipid peroxidation in type 2 diabetes,” International Journal of Pharmacy and Biological Sciences, vol. 2, no. 2, pp. 53–56, 2012.
[101]
O. Catanzaroa, J. A. Capponia, J. Michielia, E. Labala, I. D. Martinoa, and P. Sirois, “Bradykinin B1 antagonism inhibits oxidative stress and restores Na+K+ ATPase activity in diabetic rat peripheral nervous system,” Peptides, vol. 44, pp. 100–104, 2013.
[102]
G. G. Korkmaz, D. Konukoglu, E. M. Kurtulus, H. Irmak, M. Bolayirli, and H. Uzun, “Total antioxidant status and markers of oxidative stress in subjects with normal or impaired glucose regulation (IFG, IGT) in diabetic patients,” Scandinavian Journal of Clinical & Laboratory Investigation, vol. 73, no. 8, pp. 641–649, 2013.
[103]
J. Styskal, H. van Remmen, A. Richardson, and A. B. Salmon, “Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 46–58, 2012.