The present study was undertaken to assess the effect of melatonin (MT) on sperm motility, viability, total sperm abnormality, acrosomal and plasma membrane integrity, DNA abnormality, antioxidant profiles such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and total antioxidant capacity (TAC), enzymatic profiles such as aspartate amino transaminase (AST), alanine amino transaminase (ALT), and biochemical profiles such as malonaldehyde (MDA) production and cholesterol efflux. Total numbers of 30 ejaculates were collected twice a week from eight mithun bulls and semen was split into five equal aliquots, diluted with the TEYC extender. Group 1 has semen without additives (control) and group 2 to group 5 have semen that was diluted with 1?mM, 2?mM, 3?mM, and 4?mM of melatonin, respectively. These seminal parameters, antioxidant, enzymatic, and biochemical profiles were assessed at 5°C for 0, 6, 12, 24, and 30?h of incubation. Inclusion of melatonin into diluent resulted in significant ( ) decrease in percentages of dead spermatozoa, abnormal spermatozoa, and acrosomal abnormalities at different hours of storage periods as compared with control group. Additionally, melatonin at 3?mM has significant improvement in quality of mithun semen than melatonin at 1?mM, 2?mM or 4?mM stored in in vitro for up to 30?h. It was concluded that the possible protective effects of melatonin on sperm parameters are it prevents MDA production and preserve the antioxidants and intracellular enzymes during preservation. 1. Introduction Mithun (Bos frontalis) is a semiwild free-range, rare bovine species present in the North-Eastern Hill (NEH) region of India. It is believed to have originated more than 8000 years ago from wild Indian gaur (Bos gaurus) [1]. The animal has an important place in the social, cultural, religious, and economic life of the tribal population particularly in the states of Arunachal Pradesh, Nagaland, Manipur and Mizoram. Recent statistics indicates that the mithun population is decreasing gradually due to lack of suitable breeding bulls, increase in intensive inbreeding practices, declining land area for grazing and lack of suitable breeding and feeding management in NEH region. Greater efforts are required from all quarters to preserve the mithun population to enhance the socioeconomic status of this region. Since mithuns are semiwild animal and not fully domesticated, natural breeding is practiced in this species with accompanied limitations like cost and disease transmission. Thus, use of artificial insemination for improvement of
References
[1]
F. J. Simoons, “Gayal or mithun,” in Evolution of Domesticated Animals, I. L. Manson, Ed., pp. 34–36, Longman, London, UK, 1984.
[2]
P. Perumal, S. Selvaraju, S. Selvakumar et al., “Effect of pre-freeze addition of cysteine hydrochloride and reduced glutathione in semen of crossbred Jersey Bulls on sperm parameters and conception rates,” Reproduction in Domestic Animals, vol. 46, no. 4, pp. 636–641, 2011.
[3]
P. Perumal, K. Vupru, and C. Rajkhowa, “Effect of addition of taurine on the liquid storage (5°C) of mithun (Bos frontalis) semen,” Veterinary Medicine International, vol. 2013, Article ID 165348, 7 pages, 2013.
[4]
S. P. Dandekar, G. D. Nadkarni, V. S. Kulkarni, and S. Punekar, “Lipid peroxidation and antioxidant enzymes in male infertility,” Journal of Postgraduate Medicine, vol. 48, no. 3, pp. 186–189, 2002.
[5]
P. Peruma, S. Selvaraju, A. K. Barik, D. N. Mohanty, S. Das, and P. C. Mishra, “Role of reduced glutathione in improving post-thawed frozen seminal characters of poor freezable Jersey crossbred bull semen,” Indian Journal of Animal Sciences, vol. 81, no. 8, pp. 807–810, 2011.
[6]
W. M. C. Maxwell and P. F. Watson, “Recent progress in the preservation of ram semen,” Animal Reproduction Science, vol. 42, no. 1–4, pp. 55–65, 1996.
[7]
J.-F. Bilodeau, S. Blanchette, C. Gagnon, and M.-A. Sirard, “Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen,” Theriogenology, vol. 56, no. 2, pp. 275–286, 2001.
[8]
J. Gadea, E. Sellés, M. A. Marco et al., “Decrease in glutathione content in boar sperm after cryopreservation: effect of the addition of reduced glutathione to the freezing and thawing extenders,” Theriogenology, vol. 62, no. 3-4, pp. 690–701, 2004.
[9]
M. N. Bucak, A. Ate??ahin, and A. Yüce, “Effect of anti-oxidants and oxidative stress parameters on ram semen after the freeze-thawing process,” Small Ruminant Research, vol. 75, no. 2-3, pp. 128–134, 2008.
[10]
S. M. H. Andrabi, “Factors affecting the quality of cryopreserved buffalo (Bubalus bubalis) bull spermatozoa,” Reproduction in Domestic Animals, vol. 44, no. 3, pp. 552–569, 2009.
[11]
S. Akhter, B. A. Rakha, M. S. Ansari, S. M. H. Andrabi, and N. Ullah, “Storage of Nili-Ravi Buffalo (Bubalus bubalis) semen in skim milk extender supplemented with ascorbic acid and alpha-Tocopherol,” Pakistan Journal of Zoology, vol. 43, no. 2, pp. 273–277, 2011.
[12]
R. Kumar, G. Jagan Mohanarao, A. Arvind, and S. K. Atreja, “Freeze-thaw induced genotoxicity in buffalo (Bubalus bubalis) spermatozoa in relation to total antioxidant status,” Molecular Biology Reports, vol. 38, no. 3, pp. 1499–1506, 2011.
[13]
A. Shoae and M. J. Zamiri, “Effect of butylated hydroxytoluene on bull spermatozoa frozen in egg yolk-citrate extender,” Animal Reproduction Science, vol. 104, no. 2–4, pp. 414–418, 2008.
[14]
P. Jayaganthan, P. Perumal, T. C. Balamurugan et al., “Effects of Tinospora cordifolia supplementation on semen quality and hormonal profile of ram,” Animal Reproduction Science, vol. 140, no. 1, pp. 47–53, 2013.
[15]
H. Awad, F. Halawa, T. Mostafa, and H. Atta, “Melatonin hormone profile in infertile males,” International Journal of Andrology, vol. 29, no. 3, pp. 409–413, 2006.
[16]
R. J. Reiter, “Pineal melatonin: cell biology of its synthesis and of its physiological interactions,” Endocrine Reviews, vol. 12, no. 2, pp. 151–180, 1991.
[17]
R. J. Reiter, “Pineal control of a seasonal reproductive rhythm in male golden hamsters exposed to natural daylight and temperature,” Endocrinology, vol. 92, no. 2, pp. 423–430, 1973.
[18]
R. J. Reiter, B. A. Richardson, and L. Y. Johnson, “Pineal melatonin rhythm: reduction in aging Syrian hamsters,” Science, vol. 210, no. 4476, pp. 1372–1373, 1980.
[19]
R. J. Reiter, D.-X. Tan, S. J. Kim, and Q. I. Wenbo, “Melatonin as a pharmacological agent against oxidative damage to lipids and DNA,” Proceedings of the Western Pharmacology Society, vol. 41, pp. 229–236, 1998.
[20]
R. Hardeland, “Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance,” Endocrine, vol. 27, no. 2, pp. 119–130, 2005.
[21]
C. Tomás-Zapico and A. Coto-Montes, “A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes,” Journal of Pineal Research, vol. 39, no. 2, pp. 99–104, 2005.
[22]
D. X. Tan, L. D. Chen, B. Poeggeler, L. C. Manchester, and R. J. Reiter, “Melatonin: a potent, endogenous hydroxyl radical scavenger,” Endocrine Journal, vol. 1, no. 4, pp. 57–60, 1993.
[23]
R. P?hkla, M. Zilmer, T. Kullisaar, and L. R?go, “Comparison of the antioxidant activity of melatonin and pinoline in vitro,” Journal of Pineal Research, vol. 24, no. 2, pp. 96–101, 1998.
[24]
C. Pieri, M. Marra, F. Moroni, R. Recchioni, and F. Marcheselli, “Melatonin: a peroxyl radical scavenger more effective than vitamin E,” Life Sciences, vol. 55, no. 15, pp. PL271–PL276, 1994.
[25]
R. Hardeland, R. J. Reiter, B. Poeggeler, and D.-X. Tan, “The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances,” Neuroscience and Biobehavioral Reviews, vol. 17, no. 3, pp. 347–357, 1993.
[26]
A. Casao, I. Cebrián, M. E. Assumpcao et al., “Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes,” Reproductive Biology and Endocrinology, vol. 8, no. 1, article 59, 2010.
[27]
A. Casao, N. Mendoza, R. Pérez-Pé et al., “Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate,” Journal of Pineal Research, vol. 48, no. 1, pp. 39–46, 2010.
[28]
I. Ashrafi, H. Kohram, H. Naijian, M. Bahreini, and M. Poorhamdollah, “Protective effect of melatonin on sperm motility parameters on liquid storage of ram semen at 5°C,” African Journal of Biotechnology, vol. 10, no. 34, pp. 6670–6674, 2011.
[29]
J. Hyun-Yong, K. Sung-Gon, K. Jong-Taek et al., “Effects of antioxidants on sperm motility during in vitro storage of boar semen,” Korean Journal of Gerontology, vol. 16, no. 6, pp. 47–51, 2006.
[30]
I. Ashrafi, H. Kohram, and F. F. Ardabili, “Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa,” Animal Reproduction Science, vol. 139, no. 1–4, pp. 25–30, 2013.
[31]
A. D. Barth and R. J. Oko, “Preparation of semen for morphological examination,” in Abnormal Morphology of Bovine Spermatozoa, pp. 8–18, Iowa State University Press, Ames, Iowa, USA, 1989.
[32]
N. S. Tomar, Artificial Insemination and Reproduction of Cattle and Buffalos, Sarojprakashan, Allahabad, India, 1997.
[33]
P. F. Watson, “Use of a Giemsa stain to detect changes in acrosomes of frozen ram spermatozoa,” Veterinary Record, vol. 97, no. 1, pp. 12–15, 1975.
[34]
W. M. Buckett, R. G. Farquharson, M. J. M. Luckas, C. R. Kingsland, I. A. Aird, and D. I. Lewis-Jones, “The hypo-osmotic swelling test in recurrent miscarriage,” Fertility and Sterility, vol. 68, no. 3, pp. 506–509, 1997.
[35]
S. G. Revell and R. A. Mrode, “An osmotic resistance test for bovine semen,” Animal Reproduction Science, vol. 36, no. 1-2, pp. 77–86, 1993.
[36]
A. D. Barth and R. J. Oko, “Defects of the sperm head,” in Abnormal Morphology of Bovine Spermatozoa,, pp. 130–192, Iowa State University Press, Ames, Iwa, USA, 1989.
[37]
J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978.
[38]
S. A. Suleiman, M. Elamin Ali, Z. M. S. Zaki, E. M. A. El-Malik, and M. A. Nasr, “Lipid peroxidation and human sperm motility: protective role of vitamin E,” Journal of Andrology, vol. 17, no. 5, pp. 530–537, 1996.
[39]
J. Roca, M. J. Rodríguez, M. A. Gil et al., “Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase,” Journal of Andrology, vol. 26, no. 1, pp. 15–24, 2005.
[40]
M. V. Rao and B. Gangadharan, “Antioxidative potential of melatonin against mercury induced intoxication in spermatozoa in vitro,” Toxicology in Vitro, vol. 22, no. 4, pp. 935–942, 2008.
[41]
T. A. Ramadan, T. A. Taha, M. A. Samak, and A. Hassan, “Effectiveness of exposure to longday followed by melatonin treatment on semen characteristics of Damascus male goats during breeding and non-breeding seasons,” Theriogenology, vol. 71, no. 3, pp. 458–468, 2009.
[42]
S. S. du Plessis, K. Hagenaar, and F. Lampiao, “The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS,” Andrologia, vol. 42, no. 2, pp. 112–116, 2010.
[43]
R. Asadpour, R. Jafari, and H. Tayefi-Nasrabadi, “Effect of various levels of catalase antioxidant in semen extenders on lipid peroxidation and semen quality after the freeze-thawing bull semen,” Veterinary Research Forum, vol. 2, no. 4, pp. 218–221, 2011.
[44]
M. Gavella, V. Lipovac, M. Vu?i?, and B. Ro?i?, “Relationship of sperm superoxide dismutase-like activity with other sperm-specific enzymes and experimentally induced lipid peroxidation in infertile men,” Andrologia, vol. 28, no. 4, pp. 223–229, 1996.
[45]
J. G. Alvarez and B. T. Storey, “Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation,” Journal of Andrology, vol. 13, no. 3, pp. 232–241, 1992.
[46]
R. Asadpour, R. Jafari, and H. Tayefi-Nasrabadi, “The effect of antioxidant supplementation in semen extenders on semen quality and lipid peroxidation of chilled bull spermatozoa,” Iranian Journal of Veterinary Research, vol. 13, no. 3, pp. 246–249, 2012.
[47]
S. Succu, F. Berlinguer, V. Pasciu, V. Satta, G. G. Leoni, and S. Naitana, “Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner,” Journal of Pineal Research, vol. 50, no. 3, pp. 310–318, 2011.
[48]
K. Urata, H. Narahara, Y. Tanaka, T. Egashira, F. Takayama, and I. Miyakawa, “Effect of endotoxin-induced reactive oxygen species on sperm motility,” Fertility and Sterility, vol. 76, no. 1, pp. 163–166, 2001.
[49]
W. M. C. Maxwell and T. Stojanov, “Liquid storage of ram semen in the absence or presence of some antioxidants,” Reproduction, Fertility and Development, vol. 8, no. 6, pp. 1013–1020, 1996.
[50]
R. J. Aitken and J. S. Clarkson, “Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa,” Journal of Reproduction and Fertility, vol. 81, no. 2, pp. 459–469, 1987.
[51]
M. Martin, M. Macias, G. Escames, J. Leon, and D. Acuna-Castroviejo, “Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress,” FASEB Journal, vol. 14, no. 12, pp. 1677–1679, 2000.
[52]
D. A. Castroviejo, G. Escames, A. Carazo, J. Leon, H. Khaldy, and R. J. Reiter, “Melatonin, mitochondrial homeostasis and mitochondrial-related diseases,” Current Topics in Medicinal Chemistry, vol. 2, no. 2, pp. 133–151, 2002.
[53]
J. León, D. Acu?a-Castroviejo, G. Escames, D.-X. Tan, and R. J. Reiter, “Melatonin mitigates mitochondrial malfunction,” Journal of Pineal Research, vol. 38, no. 1, pp. 1–9, 2005.
[54]
A. López, J. A. García, G. Escames et al., “Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production,” Journal of Pineal Research, vol. 46, no. 2, pp. 188–198, 2009.
[55]
M. S?nmez, A. Yüce, and G. Türk, “The protective effects of melatonin and Vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats,” Reproductive Toxicology, vol. 23, no. 2, pp. 226–231, 2007.
[56]
M. Fujinoki, “Melatonin-enhanced hyperactivation of hamster sperm,” Reproduction, vol. 136, no. 5, pp. 533–541, 2008.
[57]
H. Y. Jang, Y. H. Kim, B. W. Kim et al., “Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development,” Reproduction in Domestic Animals, vol. 45, no. 6, pp. 943–950, 2010.
[58]
R. J. Aitken, G. N. de Iuliis, J. M. Finnie, A. Hedges, and R. I. McLachlan, “Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria,” Human Reproduction, vol. 25, no. 10, pp. 2415–2426, 2010.
[59]
J. Aitken and H. Fisher, “Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk,” BioEssays, vol. 16, no. 4, pp. 259–267, 1994.
[60]
M. Kankofer, G. Kolm, J. Aurich, and C. Aurich, “Activity of glutathione peroxidase, superoxide dismutase and catalase and lipid peroxidation intensity in stallion semen during storage at 5°C,” Theriogenology, vol. 63, no. 5, pp. 1354–1365, 2005.
[61]
M. Karbownik and R. J. Reiter, “Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation,” Experimental Biology and Medicine, vol. 225, no. 1, pp. 9–22, 2000.
[62]
R. J. Reiter, “Oxidative processes and antioxidative defense mechanisms in the aging brain,” FASEB Journal, vol. 9, no. 7, pp. 526–533, 1995.
[63]
D. S. Irvine, “Glutathione as a treatment for male infertility,” Reviews of Reproduction, vol. 1, no. 1, pp. 6–12, 1996.
[64]
J. G. Alvarez and B. T. Storey, “Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation,” Gamete Research, vol. 23, no. 1, pp. 77–90, 1989.
[65]
D. E. Brooks, “Biochemistry of the male accessory glands,” in Marshall’s Physiology of Reproduction, G. E. Lamming, Ed., pp. 569–690, Churchill Livingstone, Edinburgh, Scotland, 4th edition, 1990.
[66]
J. M. Corteel, “Effects du plasma séminal sur la survie et la fertilité des spermatozoids conservés in vitro,” Reproduction Nutrition Development, vol. 20, no. 4, pp. 1111–1123, 1980.
[67]
M. Gündo?an, “Some reproductive parameters and seminal plasma constituents in relation to season in Akkaraman and Awassi rams,” Turkish Journal of Veterinary and Animal Sciences, vol. 30, no. 1, pp. 95–100, 2006.
[68]
R. B. Buckland, “The activity of six enzymes of chicken seminal plasma and sperm. 1. Effect of in vitro storage and full sib families on enzyme activity and fertility,” Poultry science, vol. 50, no. 6, pp. 1724–1734, 1971.
[69]
M. Gavella and V. Lipovac, “Antioxidative effect of melatonin on human spermatozoa,” Archives of Andrology, vol. 44, no. 1, pp. 23–27, 2000.
[70]
N. Srivastava, S. K. Srivastava, S. K. Ghosh, Amit Kumar, P. Perumal, and A. Jerome, “Acrosome membrane integrity and cryocapacitation are related to cholesterol content of bull spermatozoa,” Pacific Journal of Reproduction, vol. 2, no. 2, pp. 126–131, 2013.
[71]
T. S. Witte and S. Sch?fer-Somi, “Involvement of cholesterol, calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa,” Animal Reproduction Science, vol. 102, no. 3-4, pp. 181–193, 2007.
[72]
A. I. Moore, E. L. Squires, and J. K. Graham, “Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival,” Cryobiology, vol. 51, no. 3, pp. 241–249, 2005.