全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characteristics of Centrifugal Pumps Working in Direct or Reverse Mode: Focus on the Unsteady Radial Thrust

DOI: 10.1155/2013/279049

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experimental and numerical investigations have been carried out to study the behaviour of a centrifugal pump operating in direct mode or turbine mode. First of all, the complete characteristics (head, power, and efficiency) were measured experimentally using a specific test loop. The numerical data obtained from a CFD study performed with the ANSYS CFX software and based on steady state and unsteady approaches were compared to the experimental results. The representation in the 4 operating quadrants shows the various operating zones where the head is always positive. Then, the unsteady radial forces were analysed from transient computations. The results obtained for the pump operation are consistent with the literature and extended to the nonnormal operating conditions, namely, for very high flowrate values. The evolution of the radial load during turbine operation is presented for various partial flow operating points. 1. Introduction The hydraulic performances of centrifugal pumps were widely studied experimentally over the last century, for normal operating modes close to the nominal operating point. For specific states of flow, the unsteady behaviour of the flow due to the rotor/stator interactions formed the subject of many studies. The experimental study of these unsteady phenomena requires complex and/or expensive experimental methods [1–3] such as the use of dynamic pressure sensors or strain gauges installed on the pump shaft, and, as a result, the numerical approach becomes a real alternative. As a matter of fact, CFD computations have been commonly used for approximately twenty years to predict the hydraulic performance of rotating machines. First of all, CFD computations made it possible to study and improve the design of blades. For that purpose, the use of periodical conditions became a means to reduce the size of the computational domain as well as the CPU time. Furthermore, it was possible to use a steady state approach to study operating points located close to the best efficiency point. Then, to study the rotor/stator interactions, the complete geometry of the pump needs to be integrated into the numerical model; it is also necessary to simulate these flow configurations in a transient manner [1, 4] in order to correctly predict all potential hydrodynamic instabilities. Nevertheless, although many projects focus on rotor/stator interactions, very few of them propose comparisons between numerical and experimental results. The only existing results concern the fluctuating pressure field at impeller outlet [5]. Even if a few studies

References

[1]  J. F. Combes, A. Boyer, L. Gros, D. Pierrat, G. Pintrand, and P. Chantrel, “Experimental and numerical investigations of the radial thrust in a centrifugal pump,” in Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, pp. 1–7, Honolulu, Hawaii, USA, 2008, ISROMAC12-2008-20044.
[2]  S. Guo and H. Okamoto, “An experimental study on the fluid forces induced by rotor-stator interaction in a centrifugal pump,” International Journal of Rotating Machinery, vol. 9, no. 2, pp. 135–144, 2003.
[3]  F. R. Menter, “A comparison of some recent eddy-viscosity turbulence models,” Journal of Fluids Engineering, vol. 118, no. 3, pp. 514–519, 1996.
[4]  M. Asuaje, F. Bakir, S. Kouidri, F. Kenyery, and R. Rey, “Numerical modelization of the flow in centrifugal pump: volute influence in velocity and pressure fields,” International Journal of Rotating Machinery, vol. 2005, no. 3, pp. 244–255, 2005.
[5]  J. Parrondo-Gayo, J. Fernández-Francos, J. González-Pérez, and L. Fernández-Arango, “An experimental study on the unsteady pressure distribution around the impeller outlet of a centrifugal pump,” in Proceedings of ASME Fluids Engineering Division Summer Meeting, 2000, ASME-FEDSM-00-11302.
[6]  T. Agarwal, “Review of pump as turbine (PAT) for micro-hydropower,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 11, pp. 163–168, 2012.
[7]  R. Bario, J. Fernandez, J. Parrondo, and E. Blanco, “Performance prediction of a centrifugal pump working in direct and reverse mode using computational fluid dynamics,” in Proceedings of the International Conference on Renewable Energies and Power Quality, Granada, Spain, 2010.
[8]  S. Rawal and J. T. Kshirsagar, “Numerical simulation on a pump operating in a turbine mode,” in Proceedings of the 23th International Pump Users Symposium, 2007.
[9]  S. Derakhshan and A. Nourbakhsh, “Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation,” Experimental Thermal and Fluid Science, vol. 32, no. 8, pp. 1620–1627, 2008.
[10]  S. R. Natanasabapathi and J. T. Kshirsagar, “Pump as turbine—an experience with CFX-5.6,” Corporate Research and Eng. Division, Kirloskar Bros. Ltd.; 2004, http://www.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/confpaper/2004-Int-ANSYS-Conf-127.pdf.
[11]  H. Nautiyal, V. Varun, and A. Kumar, “Reverse running pumps analytical, experimental and computational study: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 2059–2067, 2010.
[12]  R. T. Knapp, “Complete characteristics of centrifugal pumps and their use in prediction of transient behaviour,” Transactions of the American Society of Mechanical Engineers, vol. 59, pp. 683–689, 1937.
[13]  S. Derakhshan, B. Mohammadi, and A. Nourbakhsh, “Efficiency improvement of centrifugal reverse pumps,” Journal of Fluids Engineering, vol. 131, no. 2, Article ID 021103, 9 pages, 2009.
[14]  S. Derakhshan and A. Nourbakhsh, “Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds,” Experimental Thermal and Fluid Science, vol. 32, no. 3, pp. 800–807, 2008.
[15]  D. Pierrat, L. Gros, and G. Pintrand, Modélisation des écoulements Incompressibles, Approche Couplée—déCouplée, Les Ouvrages du Cetim.
[16]  F. R. Menter, “Zonal two equation k-w turbulence models for aerodynamic flows,” in Proceedings of the 24th Fluid Dynamics Conference, Orlando, Fla, USA, July1993, AIAA paper 93-2906.
[17]  M. S. Darwish and F. Moukalled, “TVD schemes for unstructured grids,” International Journal of Heat and Mass Transfer, vol. 46, no. 4, pp. 599–611, 2003.
[18]  L. Gros, A. Couzinet, D. Pierrat, and L. Landry, “Complete pump characteristics and 4-quadrants diagram investigated by experimental and numerical approaches,” in Proceedings of the ASME Conference, Hamamatsu, Japan, 2011, AJK2011_06067.
[19]  D. Pierrat, L. Gros, G. Pintrand, B. Le Fur, and Ph. Gyomlai, “Experimental and numerical investigations of leading of leading edge cavitation in a Helico—Centrifugal Pump,” in Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA, February 2008, ISROMAC12-2008-20074.
[20]  D. Pierrat, L. Gros, A. Couzinet, G. Pintrand, and Ph. Gyomlai, “On the leading edge cavitation in a helico-centrifugal pump: experimental and numerical investigations,” in Proceedings of the 3rd IAHR International Meeting of the WorkGroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic, October 2009.
[21]  J. F. Gülich, Centrifugal Pumps, Springer, New York, NY, USA, 2nd edition, 2004.
[22]  V. Hasmatuchi, “Hydrodynamics of a pump-turbine at off-design operating conditions: numerical simulations,” in Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference (AJK2011-FED '11), Hamamatsu, Japan, July 2011.
[23]  T. Staubli, F. Senn, and M. Sallaberger, “Instability of pump-turbines during start-up in the turbine mode,” in Hydro, Ljubljana, Slovénie, 2008.
[24]  Q. Liang and M. Keller, Behaviour of Pump Turbines Operating at Speed no Load Conditions in Turbine Mode, Hydro Vision, Charlotte, NC, USA, 2010.
[25]  Q. Liang, M. Keller, and N. Lederegr, “Rotor-stator interaction during no-load operation of pump-turbines,” in Hydro, Lyon, France, 2009, paper no. 7.8.
[26]  J. Vesely, L. Pulpitel, and P. Troubil, “Model research of rotating stall on pump-turbines,” in Hydro, Porto Carras, Greece, September 2006, paper no. 3.5.
[27]  C. Widmer, T. Staubli, and N. Ledergerber, Unstable Pump-Turbine Characteristics and Their Interaction with Hydraulic Sytems, Hydro Vision, Charlotte, NC, USA, 2010.
[28]  L. Wang, J. Yin, L. Jiao, D. Wu, and D. Qin, “Numerical investigation on the “s” characteristics of a reduced pump turbine model,” Science China Technological Sciences, vol. 54, no. 5, pp. 1259–1266, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133