全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Secondary Flows on Heat Transfer of a Gas Turbine Blade

DOI: 10.1155/2013/797841

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents experimental and numerical investigation for three-dimensional heat transfer characteristics in a turbine blade. An experimental setup was installed with a turbine cascade of five-blade channels. Blade heat transfer measurements were performed for the middle channel under uniform heat flux boundary conditions. Heat was supplied to the blades using twenty-nine electric heating strips cemented vertically on the outer surface of the blades. Distributions of heat transfer coefficient were obtained at three levels through blade height by measuring surface temperature distribution using thermocouples. To understand heat transfer characteristics, surface static pressure distributions on blade surface were also measured. Numerical investigation was performed as well to extend the investigation to locations other than those measured experimentally. Three-dimensional nonisothermal, turbulent flow was obtained by solving Reynolds averaged Navier-Stokes equations and energy equation. The shear stress transport model was employed to represent turbulent flow. It was found through this study that secondary flow generated by flow deflection increases heat transfer coefficient on the blade suction surface. Separation lines with high heat transfer coefficients were predicted numerically with good agreement with the experimental measurements. 1. Introduction The performance of gas turbine engines is determined by their specific work and thermal efficiency which are improved by increasing combustor gas exit temperature. However, increasing combustor exit temperature increases the thermal load on the first stage of a gas turbine engine. Consequently, heat transfer characteristics are required for engines safe operation. In addition, effective cooling of turbine blades is required to reduce thermal load and allow safe and effective operation at high levels of gas temperatures. To optimize blade cooling, exact understanding of surface heat transfer of a turbine blade is necessary. Heat transfer mechanism in gas turbine blades is very complicated due to the complexity of flow pattern around the blades. Flow in turbine cascades is characterized by different flow features which include accelerating flow on blade pressure side and accelerating and decelerating flow on blade surface. In addition, the passage flow is characterized by boundary layer effects, secondary flow generated by the passage pressure gradients, and vertical flow structures such as the leading edge horseshoe vortices. These flows affect the three-dimensional heat transfer in gas turbine

References

[1]  T. Arts, M. L. DeRouvroit, and A. W. Rutherford, “Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: a test case for inviscid and viscous flow computations,” Tech. Rep. VKI-174, 1990.
[2]  S. P. Harasgama, F. H. Tarada, R. Baumann, M. E. Crawford, and S. Neelakantan, “Calculation of heat transfer to turbine blading using two-dimensional boundary layer methods,” in Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition, ASME, May 1993.
[3]  H. U. Jiasen and T. H. Fransson, “On the application of transition correlations in turbomachinery flow calculation,” Tech. Rep. GT1998- 460, ASME, 1998.
[4]  R. Pecnik and W. Sanz, “Application of the turbulent potential model to heat transfer predictions on a turbine guide vane,” Journal of Turbomachinery, vol. 129, no. 3, pp. 628–635, 2007.
[5]  Y. Liu, “Aerodynamics and heat transfer predictions in a highly loaded turbine blade,” International Journal of Heat and Fluid Flow, vol. 28, no. 5, pp. 932–937, 2007.
[6]  L. Zhang and J.-C. Han, “Influence of mainstream turbulence on heat transfer coefficients from a gas turbine blade,” Journal of Heat Transfer, vol. 116, no. 4, pp. 896–903, 1994.
[7]  R. J. Butler, A. R. Byerley, K. VanTreuren, and J. W. Baughn, “The effect of turbulence intensity and length scale on low-pressure turbine blade aerodynamics,” International Journal of Heat and Fluid Flow, vol. 22, no. 2, pp. 123–133, 2001.
[8]  J. Choi, S. Teng, J.-C. Han, and F. Ladeinde, “Effect of free-stream turbulence on turbine blade heat transfer and pressure coefficients in low Reynolds number flows,” International Journal of Heat and Mass Transfer, vol. 47, no. 14–16, pp. 3441–3452, 2004.
[9]  A. C. Nix, T. E. Diller, and W. F. Ng, “Experimental measurements and modeling of the effects of large-scale freestream turbulence on heat transfer,” Journal of Turbomachinery, vol. 129, no. 3, pp. 542–550, 2007.
[10]  S. Nasir, J. S. Carullo, W.-F. Ng et al., “Effects of large scale high freestream turbulence and exit reynolds number on turbine vane heat transfer in a transonic cascade,” Journal of Turbomachinery, vol. 131, no. 2, pp. 1–11, 2009.
[11]  V. K. Garg and A. A. Ameri, “Two-equation turbulence models for prediction of heat transfer on a transonic turbine blade,” International Journal of Heat and Fluid Flow, vol. 22, no. 6, pp. 593–602, 2001.
[12]  L. S. Langston, M. L. Nice, and R. M. Hooper, “Three-dimensional flow within a turbine cascade passage,” Journal of Engineering Power, vol. 99, no. 1, pp. 21–28, 1977.
[13]  C. H. Sieverding, “Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages,” Journal of Engineering for Gas Turbines and Power, vol. 107, no. 2, pp. 248–257, 1985.
[14]  H. P. Wang, S. J. Olson, R. J. Goldstein, and E. R. G. Eckert, “Flow visualization in a linear turbine cascade of high performance turbine blades,” Journal of Turbomachinery, vol. 119, no. 1, pp. 1–8, 1997.
[15]  P. W. Giel, G. J. van Fossen, and R. J. Boyle, “Blade heat transfer measurements and predications in a transonic turbine cascade,” Tech. Rep. 209296, NASA, 1999.
[16]  R. Pecnik, P. Pieringer, and S. Sanz, “Numerical investigation of the secondary flow of a transonic turbine stage using turbulence closures,” Tech. Rep. GT2005- 68754, ASME, 2005.
[17]  H. Johan, C. Valery, L. Jonas, and L. Lennart, “Numerical validations of secondary flows and loss development downstream of a highly loaded low pressure turbine outlet guide vane cascade,” Tech. Rep. GT2007-27712, ASME, 2007.
[18]  M. Papa, Influence of blade leading edge geometry and upstream blowing on the heat/mass transfer in a turbine cascade [Ph.D. thesis], University of Minnesota, 2006.
[19]  S. W. Lee and J. J. Park, “Effects of incidence angle on endwall convective transport within a high-turning turbine rotor passage,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5922–5931, 2009.
[20]  S. P. Lynch, N. Sundaram, K. A. Thole, A. Kohli, and C. Lehane, “Heat transfer for a turbine blade with nonaxisymmetric endwall contouring,” Journal of Turbomachinery, vol. 133, no. 1, pp. 0110019-1–0110019-9, 2011.
[21]  S. P. Lynch, K. A. Thole, A. Kohli, and C. Lehane, “Computational predictions of heat transfer and film-cooling for a turbine blade with nonaxisymmetric endwall contouring,” ASME Journal of Turbomachinery, vol. 133, no. 4, pp. 041003-1–041003-10, 2011.
[22]  E. C. Morata, N. Gourdain, F. Duchaine, and L. Y. M. Gicqel, “Effects of free stream turbulence on high pressure turbine blade heat transfer predicated by structured and unstructured LES,” International Journal of Heat and Mass Transfer, vol. 55, no. 21–22, pp. 5754–5768, 2012.
[23]  I. Qureshi, A. D. Smith, K. S. Chana, and T. Povey, “Effect of temperature nonuniformity on heat transfer in an unshrouded transonic HP turbine: an experimental and computational investigation,” Journal of Turbomachinery, vol. 134, no. 1, pp. 011005-1–011005-12, 2012.
[24]  H. M. El-Batsh, “Effect of the radial pressure gradient on the secondary flow generated in an annular turbine cascade,” International Journal of Rotating Machinery, vol. 2012, Article ID 509209, 14 pages, 2012.
[25]  J. P. Holman and W. J. Gajda, Experimental Method For Engineering, McGraw Hill, New York, NY, USA, 1989.
[26]  J. E. Bardina, P. G. Huang, and T. J. Coakley, “Turbulence modeling validation, testing and development,” NASA Technical Memorandum 110446, 1997.
[27]  F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994.
[28]  M. Casey and T. Wintergerste, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD, Best Practices Guidelines, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133