%0 Journal Article %T Effect of Secondary Flows on Heat Transfer of a Gas Turbine Blade %A Hesham M. El-Batsh %A Sameh A. Nada %A Samia Nasreldin Abdo %A Abdelgalil A. El-Tayesh %J International Journal of Rotating Machinery %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/797841 %X This study presents experimental and numerical investigation for three-dimensional heat transfer characteristics in a turbine blade. An experimental setup was installed with a turbine cascade of five-blade channels. Blade heat transfer measurements were performed for the middle channel under uniform heat flux boundary conditions. Heat was supplied to the blades using twenty-nine electric heating strips cemented vertically on the outer surface of the blades. Distributions of heat transfer coefficient were obtained at three levels through blade height by measuring surface temperature distribution using thermocouples. To understand heat transfer characteristics, surface static pressure distributions on blade surface were also measured. Numerical investigation was performed as well to extend the investigation to locations other than those measured experimentally. Three-dimensional nonisothermal, turbulent flow was obtained by solving Reynolds averaged Navier-Stokes equations and energy equation. The shear stress transport model was employed to represent turbulent flow. It was found through this study that secondary flow generated by flow deflection increases heat transfer coefficient on the blade suction surface. Separation lines with high heat transfer coefficients were predicted numerically with good agreement with the experimental measurements. 1. Introduction The performance of gas turbine engines is determined by their specific work and thermal efficiency which are improved by increasing combustor gas exit temperature. However, increasing combustor exit temperature increases the thermal load on the first stage of a gas turbine engine. Consequently, heat transfer characteristics are required for engines safe operation. In addition, effective cooling of turbine blades is required to reduce thermal load and allow safe and effective operation at high levels of gas temperatures. To optimize blade cooling, exact understanding of surface heat transfer of a turbine blade is necessary. Heat transfer mechanism in gas turbine blades is very complicated due to the complexity of flow pattern around the blades. Flow in turbine cascades is characterized by different flow features which include accelerating flow on blade pressure side and accelerating and decelerating flow on blade surface. In addition, the passage flow is characterized by boundary layer effects, secondary flow generated by the passage pressure gradients, and vertical flow structures such as the leading edge horseshoe vortices. These flows affect the three-dimensional heat transfer in gas turbine %U http://www.hindawi.com/journals/ijrm/2013/797841/