全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relationships of Cardiorespiratory Fitness with Metabolic Risk Factors, Inflammation, and Liver Transaminases in Overweight Youths

DOI: 10.1155/2010/580897

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to assess the relationships of fatness and fitness with metabolic risk factors, including liver transaminases and inflammation in obese youth, taking in account gender, age, and pubertal stage. 241 children were studied (135 girls), age years ( ), Body Mass Index z score . For girls, was significantly associated with insulin ( ), Insulin resistance (HOMA-IR) ( ), and ALT ( ); a relationship was displayed between fibrinogen and age and % fat mass (FM) ( ); for boys, relationships were found between and diastolic blood pressure and triglycerides; independent associations were also found between age and insulin, HOMA-IR and HDL cholesterol; fibrinogen and sedimentation rate were related ( ) with %FM. Their relationships are observed from young age and increase with the continuous increase of factors. This supports the need to treat overweight as soon as it is detected; improving CRF is one of the ways which could be used to prevent the complications of obesity. 1. Introduction Overweight is associated with an increased cardiovascular risk, even in youth [1, 2]. It is also associated with a decreased cardiorespiratory fitness (CRF), which is liable to contribute to obesity itself. Several large reports clearly show a relationship between decreased CRF and the occurrence of metabolic risk factors in overweight adults and youth. Whether fitness and fatness have independent influences on metabolic risk, however, is not fully explained [3, 4]. Some of the studies addressed only one individual factor [5–9] but most of them clustered these risks in “metabolic syndrome” (MS) [8, 10–13]; MS usually associates with obesity, dyslipoproteinemia (raised triglyceride and/or reduced HDL-cholesterol levels), hypertension, and insulin resistance or diabetes, but variables included in the MS and their relative weight vary among definitions; the last of them was given by the International Diabetes Federation [14]. Nonalcoholic fatty liver disease is frequently associated with MS, so that it has been proposed as a core feature of it [15, 16]. In addition inflammation is never included in the criteria of MS, while it seems to be involved in the development of its consequences [1, 17]. The value of MS concept itself is still debated [18]. A recent WHO Expert Consultation came to the conclusions that it is not a useful diagnostic or management tool [19]. The present study assessed the respective relationships of CRF and fatness on individual components of MS, including liver transaminases as a surrogate of nonalcoholic fatty liver disease [15, 16];

References

[1]  S. R. Daniels, D. K. Arnett, and D. K. Arnett, “Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment,” Circulation, vol. 111, no. 15, pp. 1999–2012, 2005.
[2]  E. Mimoun, Y. Aggoun, and Y. Aggoun, “Association of arterial stiffness and endothelial dysfunction with metabolic syndrome in obese children,” Journal of Pediatrics, vol. 153, no. 1, pp. 65–70, 2008.
[3]  R. M. Steele, S. Brage, K. Corder, N. J. Wareham, and U. Ekelund, “Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth,” Journal of Applied Physiology, vol. 105, no. 1, pp. 342–351, 2008.
[4]  B. Fernhall and S. Agiovlasitis, “Arterial function in youth: window into cardiovascular risk,” Journal of Applied Physiology, vol. 105, no. 1, pp. 325–333, 2008.
[5]  G. D. C. Ball, G. Q. Shaibi, M. L. Cruz, M. P. Watkins, M. J. Weigensberg, and M. I. Goran, “Insulin sensitivity, cardiorespiratory fitness, and physical activity in overweight hispanic youth,” Obesity Research, vol. 12, no. 1, pp. 77–85, 2004.
[6]  C. Bouziotas, Y. Koutedakis, A. Nevill, E. Ageli, N. Tsigilis, A. Nikolaou, and A. Nakou, “Greek adolescents, fitness, fatness, fat intake, activity, and coronary heart disease risk,” Archives of Disease in Childhood, vol. 89, no. 1, pp. 41–44, 2004.
[7]  G. Imperatore, Y. J. Cheng, D. E. Williams, J. Fulton, and E. W. Gregg, “Physical activity, cardiovascular fitness, and insulin sensitivity among U.S. adolescents: the National Health and Nutrition Examination Survey, 1999–2002,” Diabetes Care, vol. 29, no. 7, pp. 1567–1572, 2006.
[8]  U. Ekelund, S. Anderssen, and S. Anderssen, “Prevalence and correlates of the metabolic syndrome in a population-based sample of European youth,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 90–96, 2009.
[9]  J. R. Ruiz, N. S. Rizzo, F. B. Ortega, H. M. Loit, T. Veidebaum, and M. Sj?str?m, “Markers of insulin resistance are associated with fatness and fitness in school-aged children: the European Youth Heart Study,” Diabetologia, vol. 50, no. 7, pp. 1401–1408, 2007.
[10]  K. T?r?k, Z. Szelényi, J. Pórszász, and D. Molnár, “Low physical performance in obese adolescent boys with metabolic syndrome,” International Journal of Obesity and Related Metabolic Disorders, vol. 25, no. 7, pp. 966–970, 2001.
[11]  G. Q. Shaibi, G. D. C. Ball, M. L. Cruz, M. J. Weigensberg, G. J. Salem, and M. I. Goran, “Cardiovascular fitness and physical activity in children with and without impaired glucose tolerance,” International Journal of Obesity, vol. 30, no. 1, pp. 45–49, 2006.
[12]  K. D. DuBose, J. C. Eisenmann, and J. E. Donnelly, “Aerobic fitness attenuates the metabolic syndrome score in normal-weight, at-risk-for-overweight, and overweight children,” Pediatrics, vol. 120, no. 5, pp. e1262–e1268, 2007.
[13]  R. M. Steele, S. Brage, K. Corder, N. J. Wareham, and U. Ekelund, “Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth,” Journal of Applied Physiology, vol. 105, no. 1, pp. 342–351, 2008.
[14]  P. Zimmet, G. Alberti, and G. Alberti, “The metabolic syndrome in children and adolescents,” The Lancet, vol. 369, no. 9579, pp. 2059–2061, 2007.
[15]  T. S. Burgert, S. E. Taksali, and S. E. Taksali, “Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral fat,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 11, pp. 4287–4294, 2006.
[16]  K. A. Love-Osborne, K. J. Nadeau, J. Sheeder, L. Z. Fenton, and P. Zeitler, “Presence of the metabolic syndrome in obese adolescents predicts impaired glucose tolerance and nonalcoholic fatty liver disease,” Journal of Adolescent Health, vol. 42, no. 6, pp. 543–548, 2008.
[17]  P. Dandona, A. Aljada, A. Chaudhuri, P. Mohanty, and R. Garg, “Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation,” Circulation, vol. 111, no. 11, pp. 1448–1454, 2005.
[18]  R. Kahn, “Is the metabolic syndrome a real syndrome?” Circulation, vol. 115, no. 13, pp. 1806–1810, 2007.
[19]  R. K. Simmons, K. G. M. M. Alberti, and K. G. M. M. Alberti, “The metabolic syndrome: useful concept or clinical tool? Report of a WHO expert consultation,” Diabetologia, vol. 53, no. 4, pp. 600–605, 2010.
[20]  K. L. Rennie, M. B. E. Livingstone, J. C. K. Wells, A. McGloin, W. A. Coward, A. M. Prentice, and S. A. Jebb, “Association of physical activity with body-composition indexes in children aged 6–8 y at varied risk of obesity,” American Journal of Clinical Nutrition, vol. 82, no. 1, pp. 13–20, 2005.
[21]  J. Z. Kasa-Vubu, C. C. Lee, A. Rosenthal, K. Singer, and J. B. Halter, “Cardiovascular fitness and exercise as determinants of insulin resistance in postpubertal adolescent females,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 849–854, 2005.
[22]  D. L. Bouglé, F. Bureau, and D. Laroche, “Trace element status in obese children: relationship with metabolic risk factors,” e-SPEN, vol. 4, no. 2, pp. e98–e100, 2009.
[23]  J. M. Tanner, R. H. Whitehouse, and M. Takaishi, “Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I,” Archives of Disease in Childhood, vol. 41, no. 219, pp. 454–471, 1966.
[24]  M. F. Rolland-Cachera, T. J. Cole, M. Sempé, J. Tichet, C. Rossignol, and A. Charraud, “Body mass index variations: centiles from birth to 87 years,” European Journal of Clinical Nutrition, vol. 45, no. 1, pp. 13–21, 1991.
[25]  T. J. Cole, M. C. Bellizzi, K. M. Flegal, and W. H. Dietz, “Establishing a standard definition for child overweight and obesity worldwide: international survey,” British Medical Journal, vol. 320, no. 7244, pp. 1240–1243, 2000.
[26]  G. Zunquin, D. Theunynck, B. Sesboüé, P. Arhan, and D. Bouglé, “Effects of puberty on fat-carbohydrate balance during exercise of obese children,” Applied Physiology, Nutrition and Metabolism, vol. 31, no. 4, pp. 442–448, 2006.
[27]  J. Achten, M. Gleeson, and A. E. Jeukendrup, “Determination of the exercise intensity that elicits maximal fat oxidation,” Medicine and Science in Sports and Exercise, vol. 34, no. 1, pp. 92–97, 2002.
[28]  P. Tounian, Y. Aggoun, and Y. Aggoun, “Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study,” The Lancet, vol. 358, no. 9291, pp. 1400–1404, 2001.
[29]  “Activité physique et obésité de l'enfant. Bases pour une prescription adaptée,” Synthèse PNNS 2008, http://www.sante.gouv.fr/htm/pointsur/nutrition/synthese_obesite.pdf.
[30]  C. D. Summerbell, E. Waters, L. D. Edmunds, S. Kelly, T. Brown, and K. J. Campbell, “Interventions for preventing obesity in children,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD001871, 2005.
[31]  A. Must, P. F. Jacques, G. E. Dallal, C. J. Bajema, and W. H. Dietz, “Long-term morbidity and mortality of overweight adolescents—a follow-up of the Harvard Growth Study of 1922 to 1935,” The New England Journal of Medicine, vol. 327, no. 19, pp. 1350–1355, 1992.
[32]  B. Gutin, Z. Yin, M. C. Humphries, R. Bassali, N.-A. Le, S. Daniels, and P. Barbeau, “Relations of body fatness and cardiovascular fitness to lipid profile in black and white adolescents,” Pediatric Research, vol. 58, no. 1, pp. 78–82, 2005.
[33]  C. Denzer, D. Thiere, R. Muche, W. Koenig, H. Mayer, W. Kratzer, and M. Wabitsch, “Gender-specific prevalences of fatty liver in obese children and adolescents: roles of body fat distribution, sex steroids, and insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 10, pp. 3872–3881, 2009.
[34]  F. Magkos, X. Wang, and B. Mittendorfer, “Metabolic actions of insulin in men and women,” Nutrition. In press.
[35]  B. K. Pedersen and B. Saltin, “Evidence for prescribing exercise as therapy in chronic disease,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, no. 1, pp. 3–63, 2006.
[36]  M. van Vliet, I. A. von Rosenstiel, R. K. Schindhelm, D. P. M. Brandjes, J. H. Beijnen, and M. Diamant, “The association of elevated alanine aminotransferase and the metabolic syndrome in an overweight and obese pediatric population of multi-ethnic origin,” European Journal of Pediatrics, vol. 168, no. 5, pp. 585–591, 2009.
[37]  I. Ciba and K. Widhalm, “The association between non-alcoholic fatty liver disease and insulin resistance in 20 obese children and adolescents,” Acta Paediatrica, vol. 96, no. 1, pp. 109–112, 2007.
[38]  E. D'Adamo, M. Impicciatore, R. Capanna, M. Loredana Marcovecchio, F. G. Masuccio, F. Chiarelli, and A. A. Mohn, “Liver steatosis in obese prepubertal children: a possible role of insulin resistance,” Obesity, vol. 16, no. 3, pp. 677–683, 2008.
[39]  P. Socha, A. Horvath, P. Vajro, P. Dziechciarz, A. Dhawan, and H. Szajewska, “Pharmacological interventions for nonalcoholic fatty liver disease in adults and in children: a systematic review,” Journal of Pediatric Gastroenterology and Nutrition, vol. 48, no. 5, pp. 587–596, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133