全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancement of Photon Absorption on Thin-Film Semiconductor Using Photonic Crystal

DOI: 10.1155/2014/534145

Full-Text   Cite this paper   Add to My Lib

Abstract:

Enhancement of photon absorption on barium strontium titanate ( ) thin-film semiconductor for mole fraction , 0.35, 0.45, and 0.55 using one-dimensional photonic crystal with defect was investigated experimentally. The thin film was grown on transparent conductive oxide (TCO) substrate using chemical solution deposition method and annealed at 500°C for 15 hours with increasing rate of 1.6°C/min. From optical characterization in visible spectrum it was found that the average absorption percentages are 92.04%, 83.55%, 91.16%, and 80.12%, respectively. The BST thin film with embedded photonic crystal exhibited a relatively significant enhancement on photon absorption, with increasing value of 3.96%, 7.07%, 3.04%, and 13.33% for the respective mole fraction and demonstrating absorbance characteristic with flat feature. In addition, we also discuss the thin-film properties of attenuation constant and electrical conductivity. 1. Introduction In solar cell technology, there are some materials that can be used as its base material. Three of them are CulnSe2 (or its alloys such as CulnS2 or CulnGaSe2), CdTe, and amorphous silicon materials. These materials only require one micron thickness to establish an efficient solar cells, due to their high light absorption [1–4]. However, CdTe and CulnSe2 have a bad impact on environment; namely, when the CdTe solar cells are on fire, this cadmium would cause harmful pollution. In laboratory scale, the CuInSe2 material has efficiency above 15%, but it is difficult to control its elements, especially when being produced in larger scale, which implies that it is difficult to produce the associated module even in a laboratory scale [1, 2]. In the mean time, for amorphous silicon material, the related solar cell has been produced in laboratory scale with efficency about 9.5% to 13% [2, 4–7]. There are several other important ferroelectric materials which were studied by many researchers such as PbTiO3, Pb ( )O3, SrBiTaO3, Pb(Mg1/3Nb2/3)O3, and BaTiO3 which is the basic of (Ba,Sr)TiO3 [8]. Due to its properties, BaSrTiO3 (or BST for short) is a material which has been intensively studied and developed. One of them is in the form of BST thin-film ferroelectric which is used and utilized in electronics such as for light sensor application that can be developed to make solar cells according to optical and electrical characteristics [9, 10]. BST thin film is a material with high dielectric constant, high degree of crystallinity (~800°C), low leakage current, and resistance to high breakdown voltage at Curie’s temperature, as well

References

[1]  R. H. Bossert, C. J. J. Tool, J. A. M. van Roosmalen, C. H. M. Wentink, and M. J. M. de Vaan, “Thin-film solar cells, technology evaluation and perspectives,” Tech. Rep., 2000, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.196.7245&rep=rep1&type=pdf.
[2]  K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Progress in Photovoltaics, vol. 12, no. 2-3, pp. 69–92, 2004.
[3]  Y. Guo, L. Huang, and A. L. Porter, “The research profiling method applied to nano-enhanced, thin-film solar cells,” R & D Management, vol. 40, no. 2, pp. 195–208, 2010.
[4]  T. V. Torchynska and G. Polupan, “High efficiency solar cell for space applications,” Superficies y Vacío, vol. 17, pp. 21–25, 2004.
[5]  R. B. Bergmann, “Crystalline Si thin-film solar cells: a review,” Applied Physics A, vol. 69, no. 2, pp. 187–194, 1999.
[6]  A. G. Aberle, “Thin-film solar cells,” Thin Solid Films, vol. 517, no. 17, pp. 4706–4710, 2009.
[7]  W. W. Wenas, “Teknologi sel surya: Perkembangan dewasa ini dan yang akan datang,” 2004, http://www.energi.lipi.go.id/.
[8]  J. W. Kim, T. Osumi, M. Mastuoka et al., “Preparation and characterization of Ba(ZrxTi1-x)O3 thin films using reactive sputtering method,” Japanese Journal of Applied Physics, vol. 51, pp. 1–5, 2012.
[9]  Irzaman, “Studi fotodiode film tipis semikonduktor Ba0,6Sr0,4TiO3 didadah tantalum,” Jurnal Sains Material Indonesia, vol. 10, pp. 18–22, 2008.
[10]  Irzaman, A. Arif, H. Syafutra, and M. Romzie, “Studi konduktivitas listrik, kurva I-V, dan celah energi fotodioda berbasis film tipis semikonduktor Ba0,75Sr0,25TiO3 (BST) yang didadah galium (BST) menggunakan metode chemical solution deposition (CSD),” Jurnal Aplikasi Fisika, vol. 5, pp. 22–30, 2009.
[11]  A. Ioachim, M. I. Toacsan, L. Nedelcu et al., “Dielectric properties of (Ba,Sr)TiO3 thin films for applications in electronics,” Romanian Journalof Information Science and Technology, vol. 10, pp. 347–354, 2007.
[12]  F. M. Pontes, E. R. Leite, D. S. L. Pontes et al., “Ferroelectric and optical properties of Ba0.8Sr0.2TiO3 thin film,” Journal of Applied Physics, vol. 91, no. 9, pp. 5972–5978, 2002.
[13]  F. Fitsilis, S. Regnery, P. Ehrhart et al., “BST thin films grown in a multiwafer MOCVD reactor,” Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1547–1551, 2001.
[14]  S. B. Singh, H. B. Sharma, H. N. K. Sarma, and S. Phanjoubam, “Optical and structural properties of nano-sized barium strontium titanate (Ba0.6Sr0.4TiO3) thin film,” Modern Physics Letters B, vol. 22, no. 9, pp. 693–700, 2008.
[15]  Y. Xin, R. Wei, S. Peng, W. Xiaoqing, and Y. Xi, “Enhanced tunable dielectric properties of Ba0.5Sr0.5TiO3/Bi1.5Zn1.0Nb1.5O7 multilayer thin films by a sol-gel process,” Thin Solid Films, vol. 520, no. 2, pp. 789–792, 2011.
[16]  N. B. Ibrahim, E. Yusrianto, Z. Zalita, and Z. Ibarahim, “Effect of annealing temperature of Sol-Gel TiO2 buffer layer on microstructure and electrical properties of Ba0.6Sr0.4TiO3 films,” Sains Malaysiana, vol. 41, no. 3, pp. 339–344, 2012.
[17]  K. Verma, S. Sharma, D. K. Sharma, R. Kumar, and R. Rai, “Sol gel processing and characterization of nanometersized (Ba, Sr)TiO3 ceramics,” Advanced Materials Letters, vol. 3, pp. 44–49, 2012.
[18]  M. Tyunina, M. Plekh, J. Levoska et al., “Dielectric properties of atomic layer deposited thin-film barium strontium titanate,” Integrated Ferroelectrics, vol. 102, no. 1, pp. 29–36, 2008.
[19]  D. Gao, D. Xiao, J. Bi et al., “Hydrothermal syntheses of barium strontium titanate thin films,” Materials Transactions, vol. 44, no. 7, pp. 1320–1323, 2003.
[20]  I. P. Koutsaroff, A. Kassam, M. Zelner et al., “Dielectric properties of (Ba,Sr)TiO3 thin film capacitors fabricated on alumina substrates,” MRS Proceedings, vol. 748, article U6.1, 2003.
[21]  P. M. Suherman, Y. Y. Tse, T. J. Jackson et al., “Comparison of structural, microstructural, and electrical analyses of barium strontium titanate thin films,” Journal of Applied Physics, vol. 105, no. 6, Article ID 061604, 2009.
[22]  Y. Iriani, M. Hikam, B. Soegijono, and I. Mudzakir, “Pengaruh heating rate dan jumlah lapisan terhadap sifat listrik (kurva histeresis) pada lapisan tipis Barium Strontium Titanat,” Indonesian Journal of Materials Science, pp. 205–208, 2008.
[23]  Irzaman, A. Marwan, A. Arief, R. A. Hamdani, and M. Komaro, “Electrical conductivity and surface rougness properties of ferroelectric gallium doped Ba0.5Sr0.5TiO3 (BGST) thin film,” Indonesian Journal of Physics, vol. 19, pp. 119–121, 2008.
[24]  Irzaman, H. Syafutra, H. Darmasetiawan et al., “Electrical properties of photodiode Ba0.25Sr0.75TiO3 (BST) thin film doped with ferric oxide on p-type Si (100) substrate using chemical solution deposition method,” Atom Indonesia, vol. 37, pp. 133–138, 2011.
[25]  N. Sirikulrat, “Colossal dielectric constant and a microfarad tunable capacitance in platinum thin film-antimony doped Barium Strontium Titanate Schottky barrier diodes,” Thin Solid Films, vol. 520, no. 1, pp. 633–640, 2011.
[26]  S. M. Aygün, J. F. Ihlefeld, W. J. Borland, and J.-P. Maria, “Permittivity scaling in Ba1-xSrxTiO3 thin films and ceramics,” Journal of Applied Physics, vol. 109, no. 3, Article ID 034108, 2011.
[27]  J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 2008.
[28]  H. Alatas, H. Mayditia, H. Hardhienata, A. A. Iskandar, and M. O. Tjia, “Single-frequency refractive index sensor based on a finite one-dimensional photonic crystals with two defects,” Japanese Journal of Applied Physics, vol. 45, pp. 6754–6758, 2006.
[29]  P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Optics Express, vol. 15, no. 25, pp. 16986–17000, 2007.
[30]  A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Optics Express, vol. 17, no. 11, pp. 8871–8878, 2009.
[31]  Y. Park, E. Drouard, O. E. Daif et al., “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Optics Express, vol. 17, no. 16, pp. 14312–14321, 2009.
[32]  A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” Journal of Applied Physics, vol. 112, no. 7, Article ID 074327, 2012.
[33]  W. Maulina, M. Rahmat, E. Rustami et al., “Fabrication and characterization of NO2 gas sensor based on one dimensional photonic crystal for measurement of air pollution index,” in Proceedings of the 2nd International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering (ICICI-BME '11), pp. 352–355, Bandung, Indonesia, November 2011.
[34]  A. Maddu and G. E. Timuda, “Pengaruh ketebalan terhadap sifat optik lapisan semikonduktor Cu2O yang dideposisikan dengan metode chemical bath deposition (CBD),” Jurnal Ilmu Pengetahuan dan Teknologi Telaah, vol. 28, pp. 1–5, 2010.
[35]  W. J. Leng, C. R. Yang, J. H. Zhang et al., “Structural and optical properties of BaxSr1-xTiO3 thin films on indium tin oxide/quartz substrates prepared by radio-frequency magnetron sputtering,” Journal of Applied Physics, vol. 99, no. 11, Article ID 114904, pp. 1–5, 2006.
[36]  K. K. Ng, Complete Guide to Semiconductor Device, McGraw-Hill, New York, NY, USA, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133