全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Bacterial Antibiotic Resistance Transfer in the Gut

DOI: 10.1155/2011/312956

Full-Text   Cite this paper   Add to My Lib

Abstract:

We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic resistant bacteria. The human gastrointestinal tract is a massive reservoir of bacteria with a potential for both receiving and transferring antibiotic resistance genes. The increased use of fermented food products and probiotics, as food supplements and health promoting products containing massive amounts of bacteria acting as either donors and/or recipients of antibiotic resistance genes in the human GI tract, also contributes to the emergence of antibiotic resistant strains. This paper deals with the assessment of antibiotic resistance gene transfer occurring in the gut. 1. Emergence of Antibiotic Resistance The introduction of antibiotics after World War I resulted in a dramatic decrease of numbers of deaths due to bacterial infections. Today, antibiotics have lost their status as the “miracle drug” [1, 2] and “treatment failure” is a new and often seen situation [1–5]. The increase of antibiotic resistance is to be blamed for this medical emergency. The sustainability of antibiotic resistance is partly due to selection of already resistant bacteria that become the new dominant population in the environment. Furthermore, antibiotic usage urges bacteria sensitive to antibiotics to become resistant in order to survive. Survival mechanisms include the acquisition of antibiotic resistance genes from other bacteria/phages (horizontal gene transfer or transduction), mutations in specific genes, and alteration of the bacterial surface. Thus continuous usage and accumulation of antibiotics in the environment has resulted in the increase of antibiotic resistant bacteria not only in Europe but also worldwide. The relationship between antibiotics used as antimicrobial growth promoters (AGPs) in production animals and the development of resistant bacteria in food products has been related to human food born infections with resistant strains. This was not easy to acknowledge. A few countries within the European Union (EU) have acted on the new research regarding the suspicious use of AGP [6]. These countries were Sweden in 1986, Norway in 1995, and Denmark in 1998-1999 [7, 8].

References

[1]  R. Bud, “Antibiotics: the epitome of a wonder drug,” BMJ, vol. 334, p. s6, 2007.
[2]  I. Andersson, A. C. Terwisscha van Scheltinga, and K. Valeg?rd, “Towards new β-lactam antibiotics,” Cellular and Molecular Life Sciences, vol. 58, no. 12-13, pp. 1897–1906, 2001.
[3]  J. J. Ross, M. G. Worthington, S. L. Gorbach et al., “Resistance to levofloxacin and failure of treatment of Pneumococcal pneumonia,” New England Journal of Medicine, vol. 347, no. 1, pp. 65–67, 2002.
[4]  W. Song, E. S. Moland, N. D. Hanson, J. S. Lewis, J. H. Jorgensen, and K. S. Thomson, “Failure of cefepime therapy in treatment of Klebsiella pneumoniae bacteremia,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4891–4894, 2005.
[5]  D. Talon, M. C. Woronoff-Lemsi, S. Limat et al., “The impact of resistance to methicillin in Staphylococcus aureus bacteremia on mortality,” European Journal of Internal Medicine, vol. 13, no. 1, pp. 31–36, 2002.
[6]  F. M. Aarestrup and B. Carstensen, “Effect of tylosin used as a growth promoter on the occurrence of macrolide-resistant enterococci and staphylococci in pigs,” Microbial Drug Resistance, vol. 4, no. 4, pp. 307–312, 1998.
[7]  Anonymous, “DANMAP—Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark,” 2007.
[8]  K. Grave, V. F. Jensen, K. Odensvik, M. Wierup, and M. Bangen, “Usage of veterinary therapeutic antimicrobials in Denmark, Norway and Sweden following termination of antimicrobial growth promoter use,” Preventive Veterinary Medicine, vol. 75, no. 1-2, pp. 123–132, 2006.
[9]  Anomymous, “European Commission, Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance Question EFSA-Q-2004-079,” The EFSA Journal, vol. 223, pp. 1–12, 2005.
[10]  C. A.M. McNulty and N. A. Francis, “Optimizing antibiotic prescribing in primary care settings in the UK: findings of a BSAC multi-disciplinary worksho,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 11, pp. 2278–2284, 2010.
[11]  L. Grigoryan, F. M. Haaijer-Ruskamp, J. G. M. Burgerhof et al., “Self-medication with antimicrobial drugs in Europe,” Emerging Infectious Diseases, vol. 12, no. 3, pp. 452–459, 2006.
[12]  H. Goossens, M. Ferech, R. Vander Stichele, and M. Elseviers, “Outpatient antibiotic use in Europe and association with resistance: a cross-national database study,” The Lancet, vol. 365, no. 9459, pp. 579–587, 2005.
[13]  H. Goossens, D. Guillemot, M. Ferech et al., “National campaigns to improve antibiotic use,” European Journal of Clinical Pharmacology, vol. 62, no. 5, pp. 373–379, 2006.
[14]  N. H?iby, T. Bjarnsholt, M. Givskov, S. Molin, and O. Ciofu, “Antibiotic resistance of bacterial biofilms,” International Journal of Antimicrobial Agents, vol. 35, no. 4, pp. 322–332, 2010.
[15]  K. D. Xu, G. A. McFeters, and P. S. Stewart, “Biofilm resistance to antimicrobial agents,” Microbiology, vol. 146, no. 3, pp. 547–549, 2000.
[16]  B. B. Christensen, C. Sternberg, J. B. Andersen et al., “Establishment of new genetic traits in a microbial biofilm community,” Applied and Environmental Microbiology, vol. 64, no. 6, pp. 2247–2255, 1998.
[17]  S. J. S?rensen, M. Bailey, L. H. Hansen, N. Kroer, and S. Wuertz, “Studying plasmid horizontal transfer in situ: a critical review,” Nature Reviews Microbiology, vol. 3, no. 9, pp. 700–710, 2005.
[18]  S. Molin and T. Tolker-Nielsen, “Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure,” Current Opinion in Biotechnology, vol. 14, no. 3, pp. 255–261, 2003.
[19]  D. Aragon, M. L. Sole, and S. Brown, “Outcomes of an infection prevention project focusing on hand hygiene and isolation practices,” AACN Clinical Issues, vol. 16, no. 2, pp. 121–132, 2005.
[20]  N. Frimodt-M?ller and B. Gahrn-Hansen, “Antibiotics in a hospital hygienic perspective,” Ugeskrift for Laeger, vol. 169, no. 49, pp. 4254–4256, 2007.
[21]  G. L. Simon and S. L. Gorbach, “Intestinal flora in health and disease,” Gastroenterology, vol. 86, no. 1, pp. 174–193, 1984.
[22]  S. P. Borriello, “Microbial flora of the gastrointestinal tract,” in Microbial metabolism in the digestive tract, M. J. Hill, Ed., pp. 2–16, CRC Press, Boca Raton, Fla, USA, 1986.
[23]  E. Isolauri, S. Salminen, and A. C. Ouwehand, “Microbial-gut interactions in health and disease,” Probiotics Best Practice & Research Clinical Gastroenterology, vol. 18, no. 2, pp. 299–313, 2008.
[24]  E. G. Zoetendal, C. T. Collier, S. Koike, R. I. Mackie, and H. R. Gaskins, “Molecular ecological analysis of the gastrointestinal microbiota: a review,” Journal of Nutrition, vol. 134, no. 2, pp. 465–472, 2004.
[25]  R. I. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiological Reviews, vol. 59, no. 1, pp. 143–169, 1995.
[26]  J. Qin, R. Li, J. Raes et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010.
[27]  E. Grasselli, P. Fran?ois, M. Gutacker et al., “Evidence of horizontal gene transfer between human and animal commensal Escherichia coli strains identified by microarray,” FEMS Immunology and Medical Microbiology, vol. 53, no. 3, pp. 351–358, 2008.
[28]  A. A. Salyers, A. Gupta, and Y. Wang, “Human intestinal bacteria as reservoirs for antibiotic resistance genes,” Trends in Microbiology, vol. 12, no. 9, pp. 412–416, 2004.
[29]  P. Courvalin, “Predictable and unpredictable evolution of antibiotic resistance,” Journal of Internal Medicine, vol. 264, no. 1, pp. 4–16, 2008.
[30]  P. Mazodier and J. Davies, “Gene transfer between distantly related bacteria,” Annual Review of Genetics, vol. 25, pp. 147–171, 1991.
[31]  F. M. Aarestrup, H. Kruse, E. Tast, A. M. Hammerum, and L. B. Jensen, “Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway,” Microbial Drug Resistance, vol. 6, no. 1, pp. 63–70, 2000.
[32]  D. I. Andersson and B. R. Levin, “The biological cost of antibiotic resistance,” Current Opinion in Microbiology, vol. 2, no. 5, pp. 489–493, 1999.
[33]  D. I. Andersson and D. Hughes, “Antibiotic resistance and its cost: is it possible to reverse resistance?” Nature Reviews Microbiology, vol. 8, no. 4, pp. 260–271, 2010.
[34]  J. Bj?rkman, D. Hughes, and D. I. Andersson, “Virulence of antibiotic-resistant Salmonella typhimurium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3949–3953, 1998.
[35]  L. L. Marcusson, N. Frimodt-M?ller, and D. Hughes, “Interplay in the selection of fluoroquinolone resistance and bacterial fitness,” PLoS Pathogens, vol. 5, no. 8, Article ID e1000541, 2009.
[36]  C. Fermér and G. Swedberg, “Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli,” Journal of Bacteriology, vol. 179, no. 3, pp. 831–837, 1997.
[37]  J. Bj?rkman, I. Nagaev, O. G. Berg, D. Hughes, and D. I. Andersson, “Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance,” Science, vol. 287, no. 5457, pp. 1479–1482, 2000.
[38]  I. Nagaev, J. Bj?rkman, D. I. Andersson, and D. Hughes, “Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus,” Molecular Microbiology, vol. 40, no. 2, pp. 433–439, 2001.
[39]  B. R. Levin, V. Perrot, and N. Walker, “Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria,” Genetics, vol. 154, no. 3, pp. 985–997, 2000.
[40]  F. Guarner and J. R. Malagelada, “Gut flora in health and disease,” The Lancet, vol. 361, no. 9356, pp. 512–519, 2003.
[41]  ?. Sullivan, “Effect of antimicrobial agents on the ecological balance of human microflora,” Lancet Infectious Diseases, vol. 1, no. 2, pp. 101–114, 2001.
[42]  C. E. Nord, A. Heimdahl, and L. Kager, “Antimicrobial agents and the human oropharyngeal and intestinal microflora,” Annali dell'Istituto Superiore di Sanita, vol. 22, no. 3, pp. 883–892, 1986.
[43]  A. Apisarnthanarak and L. M. Mundy, “Death due to community-associated Clostridium difficile in a woman receiving prolonged antibiotic therapy for suspected lyme disease,” Clinical Infectious Diseases, vol. 51, no. 3, pp. 369–370, 2010.
[44]  S. M. Wren, N. Ahmed, A. Jamal et al., “Preoperative oral antibiotics in colorectal surgery increase the rate of Clostridium difficile colitis,” Archives of Surgery, vol. 140, no. 8, pp. 752–756, 2005.
[45]  G. R. Gibson and R. Fuller, “Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use,” Journal of Nutrition, vol. 130, no. 2, 2000.
[46]  N. Toomey, A. Monaghan, S. Fanning, and D. Bolton, “Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments,” Applied and Environmental Microbiology, vol. 75, no. 10, pp. 3146–3152, 2009.
[47]  C. C. Schackelford and M. R. Elwell, “Small and large intestine, and mesentery,” in Pathology of the Mouse, R. R. Maronpot, Ed., pp. 81–118, Cache River Press, St. Louis, Mo, USA, 1999.
[48]  R. Ducluzeau, “Microbial Interactions in the digestive tract,” in The Germ-Free Animal in Biomedical Research, M. Coates and B. E. Gustafsson, Eds., vol. 9, pp. 141–154, Laboratory Animal, 1984.
[49]  M. Pollard and N. Sharon, “Responses of the Peyer's patches in germ-free mice to antigenic stimulation,” Infection and Immunity, vol. 2, no. 1, pp. 96–100, 1970.
[50]  R. Freter, “Mechanisms that control the microflora in the large intestine,” in Human Intestinal Microflora in Health and Disease, D. J. Hentges, Ed., pp. 33–54, 1983.
[51]  D. J. Hentges, A. J. Stein, S. W. Casey, and J. U. Que, “Protective role of intestinal flora against infection with Pseudomonas aeruginosa in mice: influence of antibiotics on colonization resistance,” Infection and Immunity, vol. 47, no. 1, pp. 118–122, 1985.
[52]  D. J. Hentges, “The Influence of streptomycon on colonization resistance in mice,” Microecology and Therapy, vol. 14, pp. 53–62, 1984.
[53]  L. K. Poulsen, T. R. Licht, C. Rang, K. A. Krogfelt, and S. Molin, “Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice,” Journal of Bacteriology, vol. 177, no. 20, pp. 5840–5845, 1995.
[54]  J. U. Que and D. J. Hentges, “Effect of streptomycin administration on colonization resistance to Salmonella typhimurium in mice,” Infection and Immunity, vol. 48, no. 1, pp. 169–174, 1985.
[55]  K. Hirayama, “Ex-germfree mice harboring intestinal microbiota derived from other animal species as an experimental model for ecology and metabolism of intestinal bacteria,” Experimental Animals, vol. 48, no. 4, pp. 219–227, 1999.
[56]  R. Kibe, M. Sakamoto, H. Yokota et al., “Movement and fixation of intestinal microbiota after administration of human feces to germfree mice,” Applied and Environmental Microbiology, vol. 71, no. 6, pp. 3171–3178, 2005.
[57]  P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005.
[58]  G. W. Tannock, “Microbiota of mucosal surfaces in the gut of monogastric animals,” in Colonization of Mucosal Surfaces, J. P. Nataro, P. S. Cohen, H. L. T. Mobley, and J. N. Weiser, Eds., pp. 163–178, ASM Press, Washington, DC, USA, 2005.
[59]  H. A. Gordon and L. Pesti, “The gnotobiotic animal as a tool in the study of host microbial relationships,” Bacteriological Reviews, vol. 35, no. 4, pp. 390–429, 1971.
[60]  Anomymous and FAO/WHO Consultations and workshops, “Safety assessment of foods derived from genetically modified microorganisms,” Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, pp.1–29, 2001.
[61]  R. J. Boyle, R. M. Robins-Browne, and M. L. K. Tang, “Probiotic use in clinical practice: what are the risks?” American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1256–1264, 2006.
[62]  L. Feld, S. Schj?rring, K. Hammer et al., “Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 4, pp. 845–852, 2008.
[63]  D. Gevers, G. Huys, and J. Swings, “in vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria,” FEMS Microbiology Letters, vol. 225, no. 1, pp. 125–130, 2003.
[64]  L. Jacobsen, A. Wilcks, K. Hammer, G. Huys, D. Gevers, and S. R. Andersen, “Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats,” FEMS Microbiology Ecology, vol. 59, no. 1, pp. 158–166, 2007.
[65]  Y. Sasaki, N. Taketomo, and T. Sasaki, “Factors affecting transfer frequency of pAMβ1 from Streptococcus faecalis to Lactobacillus plantarum,” Journal of Bacteriology, vol. 170, no. 12, pp. 5939–5942, 1988.
[66]  J. Schlundt, P. Saadbye, B. Lohmann, B. L. Jacobsen, and E. M. Nielsen, “Conjugal transfer of plasmid DNA between Lactococcus lactis strains and distribution of transconjugants in the digestive tract of gnotobiotic rats,” Microbial Ecology in Health and Disease, vol. 7, no. 2, pp. 59–69, 1994.
[67]  M. Gruzza, M. Fons, M. F. Ouriet, Y. Duval-Iflah, and R. Ducluzeau, “Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora,” Microbial Releases, vol. 2, no. 4, pp. 183–189, 1994.
[68]  G. W. Tannock, “Conjugal transfer of plasmid pAM beta 1 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis,” Applied and Environmental Microbiology, vol. 53, no. 11, pp. 2693–2695, 1987.
[69]  P. S. Cocconcelli, L. Morelli, and M. Vescovo, “Conjugal transfer of antibiotic resistances from Lactobacillus to Streptococcus lactis,” Microbiologie Aliments Nutrition, vol. 3, no. 2, pp. 163–165, 1985.
[70]  M. J. Gasson and F. L. Davies, “Conjugal transfer of the drug resistance plasmid pAMβ in the lactic streptococci,” FEMS Microbiology Letters, vol. 7, no. 1, pp. 51–53, 1980.
[71]  A. W. Shrago, B. M. Chassy, and W. J. Dobrogosz, “Conjugal plasmid transfer (pAMβ1) in Lactobacillus plantarum,” Applied and Environmental Microbiology, vol. 52, no. 3, pp. 574–576, 1986.
[72]  C. A. West and P. J. Warner, “Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum,” Applied and Environmental Microbiology, vol. 50, no. 5, pp. 1319–1321, 1985.
[73]  L. Morelli, P. G. Sarra, and V. Bottazzi, “in vivo transfer of pAMβ1 from Lactobacillus reuteri to Enterococcus faecalis,” Journal of Applied Bacteriology, vol. 65, no. 5, pp. 371–375, 1988.
[74]  J. M. Korhonen, Y. Sclivagnotis, and A. V. Wright, “Characterization of dominant cultivable lactobacilli and their antibiotic resistance profiles from faecal samples of weaning piglets,” Journal of Applied Microbiology, vol. 103, no. 6, pp. 2496–2503, 2007.
[75]  S. Schj?rring, C. Struve, and K. A. Krogfelt, “Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 5, pp. 1086–1093, 2008.
[76]  K. Tuohy, M. Davies, P. Rumsby, C. Rumney, M. R. Adams, and I. R. Rowland, “Monitoring transfer of recombinant and nonrecombinant plasmids between Lactococcus lactis strains and members of the human gastrointestinal microbiota in vivo—Impact of donor cell number and diet,” Journal of Applied Microbiology, vol. 93, no. 6, pp. 954–964, 2002.
[77]  G. C. Burton, D. C. Hirsh, D. C. Blenden, and J. L. Zeigler, “The effects of tetracycline on the establishment of Escherichia coli of animal origin, and in vivo transfer of antibiotic resistance, in the intestinal tract of man,” Society for Applied Bacteriology symposium series, vol. 3, no. 0, pp. 241–253, 1974.
[78]  C. H. Lester, N. Frimodt-M?ller, T. L. S?rensen, D. L. Monnet, and A. M. Hammerum, “in vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 2, pp. 596–599, 2006.
[79]  E. Balis, A. C. Vatopoulos, M. Kanelopoulou et al., “Indications of in vivo transfer of an epidemic R plasmid from Salmonella enteritidis to Escherichia coli of the normal human gut flora,” Journal of Clinical Microbiology, vol. 34, no. 4, pp. 977–979, 1996.
[80]  L. H. Su, C. H. Chiu, C. Chu, M. H. Wang, JU. H. Chia, and T. L. Wu, “in vivo acquisition of ceftriaxone resistance in Salmonella enterica serotype anatum,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 2, pp. 563–567, 2003.
[81]  L. M. Cavaco, E. Abatih, F. M. Aarestrup, and L. Guardabassi, “Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 10, pp. 3612–3616, 2008.
[82]  P. Bidet, B. Burghoffer, V. Gautier et al., “in vivo transfer of plasmid-encoded ACC-1 AmpC from Klebsiella pneumoniae to Escherichia coli in an infant and selection of impermeability to imipenem in K. pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 8, pp. 3562–3565, 2005.
[83]  W. Witte, “Ecological impact of antibiotic use in animals on different complex microflora: environment,” International Journal of Antimicrobial Agents, vol. 14, no. 4, pp. 321–325, 2000.
[84]  Anonymous, Annual Report on Zoonoses in Denmark 2006, Technical University of Denmark, 2006.
[85]  S. Ethelberg, G. S?rensen, B. Kristensen et al., “Outbreak with multi-resistant Salmonella Typhimurium DT104 linked to carpaccio, Denmark, 2005,” Epidemiology and Infection, vol. 135, no. 6, pp. 900–907, 2007.
[86]  H. C. Lewis, M. Kirk, S. Ethelberg et al., “Outbreaks of shigellosis in Denmark and Australia associated with imported baby corn, August 2007—final summary,” Euro Surveillance, vol. 12, no. 10, Article ID E071004, 2007.
[87]  A. S?derstr?m, A. Lindberg, and Y. Andersson, “EHEC O157 outbreak in Sweden from locally produced lettuce, August-September 2005,” Euro Surveillance, vol. 10, no. 9, Article ID E050922, 2005.
[88]  K. E. Emberland, K. Nyg?rd, B. T. Heier et al., “Outbreak of Salmonella Kedougou in Norway associated with salami, April-June 2006,” Euro Surveillance, vol. 11, no. 7, Article ID E060706, 2006.
[89]  L. Guardabassi, M. Stegger, and R. Skov, “Retrospective detection of methicillin resistant and susceptible Staphylococcus aureus ST398 in Danish slaughter pigs,” Veterinary Microbiology, vol. 122, no. 3-4, pp. 384–386, 2007.
[90]  N. Nógrády, G. Kardos, A. Bistyák et al., “Prevalence and characterization of Salmonella infantis isolates originating from different points of the broiler chicken-human food chain in Hungary,” International Journal of Food Microbiology, vol. 127, no. 1-2, pp. 162–167, 2008.
[91]  H. Hasman, D. Mevius, K. Veldman, I. Olesen, and F. M. Aarestrup, “β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 115–121, 2005.
[92]  Y. Agers?, C. H. Lester, L. J. Porsbo et al., “Vancomycin-resistant Enterococcus faecalis isolates from a Danish patient and two healthy human volunteers are possibly related to isolates from imported turkey meat,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 4, pp. 844–845, 2008.
[93]  A. Dambrosio, V. Lorusso, N. C. Quaglia et al., “Escherichia coli O26 in minced beef: prevalence, characterization and antimicrobial resistance pattern,” International Journal of Food Microbiology, vol. 118, no. 2, pp. 218–222, 2007.
[94]  A. Wilcks, S. R. Andersen, and T. R. Licht, “Characterization of transferable tetracycline resistance genes in Enterococcus faecalis isolated from raw food,” FEMS Microbiology Letters, vol. 243, no. 1, pp. 15–19, 2005.
[95]  H. H. Wang, M. Manuzon, M. Lehman et al., “Food commensal microbes as a potentially important avenue intransmitting antibiotic resistance genes,” FEMS Microbiology Letters, vol. 254, no. 2, pp. 226–231, 2006.
[96]  I. Klare, C. Konstabel, G. Werner et al., “Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 5, pp. 900–912, 2007.
[97]  A. B. Flórez, M. S. Ammor, and B. Mayo, “Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci,” International Journal of Food Microbiology, vol. 121, no. 2, pp. 189–194, 2008.
[98]  B. Kurenbach, C. Bohn, J. Prabhu, M. Abudukerim, U. Szewzyk, and E. Grohmann, “Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region,” Plasmid, vol. 50, no. 1, pp. 86–93, 2003.
[99]  E. Charpentier, G. Gerbaud, and P. Courvalin, “Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among gram-positive and gram-negative bacteria,” Journal of Bacteriology, vol. 181, no. 11, pp. 3368–3374, 1999.
[100]  J. Bertram, M. Stratz, and P. Durre, “Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria,” Journal of Bacteriology, vol. 173, no. 2, pp. 443–448, 1991.
[101]  G. Van Den Eede, H. Aarts, H. J. Buhk et al., “The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants,” Food and Chemical Toxicology, vol. 42, no. 7, pp. 1127–1156, 2004.
[102]  P. Wiener, S. Egan, A. S. Huddleston, and E. M. H. Wellington, “Evidence for the transfer of antibiotic-resistance genes in soil populations of streptomycetes,” Molecular Ecology, vol. 7, pp. 1205–1216, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133