The present paper deals with the synthesis and characterization of metal complexes of Schiff base derived from xipamide, a diuretic drug. The bidentate ligand is derived from the inserted condensation of 5-aminosulfonyl-4-chloro-N-2,6-dimethyl phenyl-2-hydroxybenzamide (Xipamide) with salicylaldehyde in a 1?:?1 molar ratio. Using this bidentate ligand, complexes of Hg(II), Zn(II), and VO(IV) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using molar conductance, elemental analysis, magnetic susceptibility, FT-IR spectroscopy, electronic spectra, mass spectra, and particle size analysis. The elemental analysis data suggest the stoichiometry to be 1?:?2 [M?:?L]. All the complexes are nonelectrolytic in nature as suggested by molar conductance measurements. Infrared spectral data indicate the coordination between the ligand and the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. Spectral studies suggest tetrahedral geometry for Hg(II), Zn(II) complexes, and square pyramidal geometry for VO(IV) complex. The pure drug, synthesized ligand, and metal complexes were screened for their antifungal activities against Aspergillus niger and Aspergillus flavus. The ligand and its Hg(II) and VO(IV) complexes were screened for their diuretic activity too. 1. Introduction Coordination complexes are gaining importance in recent years especially in the designing of long acting drugs in metabolism. The metal complexes from bidentate ligands have often been studied recently because of their technical applications [1, 2] and applications in enhancement of drug action [3, 4]. Transition metals are essential for normal functioning of living organism and are, therefore, of great interest as potential drugs [5]. The coordination chemistry of nitrogen donor ligands is an active area of research. A great deal of attention in this area has been focused on the complexes formed by 3d metals with bidentate ligands using both sulfur and nitrogen [6, 7]. The Schiff bases are an important class of ligands in coordination chemistry. The study of structural and binding features of various Schiff base complexes can play an important role in better understanding of the complex biological process. Schiff bases derived from salicylaldehyde are well known for their interesting ligational properties and exclusive applications in different fields [8–10]. It is well known from the literature that Schiff bases derived from thiazide drugs have a strong ability to form metal complexes [11]. The
References
[1]
N. Raman, V. Muthuraj, S. Ravichandran, and A. Kulandaisamy, “Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity,” Journal of Chemical Sciences, vol. 115, no. 3, pp. 161–167, 2003.
[2]
C. Briickner, S. J. Rettig, and D. Dolphin, “2-Pyrrlythiones as monoanionic bidentate N, S- chelators: synthesis and molecular structure of 2-pyrrlythionato complexes of Ni(II), Co(II) and Hg(II),” Inorganic Chemistry, vol. 39, pp. 6100–6106, 2000.
[3]
Y. Prashanthi, K. Kiranmai, Ira. Kumar, S. Chityala, and V. K. Shivraj, “Spectroscopic characterization and biological activity of mixed ligand complexes of Ni(II) with 1,10-phenanthroline and heterocyclic schiff bases,” Bioinorganic Chemistry and Applications, vol. 2012, Article ID 948534, 8 pages, 2012.
[4]
N. Raman, S. J. Raja, J. Joseph, A. Sakthivel, and J. D. Raja, “Designing, synthesis, spectral characterization of antimicrobial and DNA active tridentate Schiff base ligands and their complexes,” Journal of the Chilean Chemical Society, vol. 53, no. 3, pp. 1599–1604, 2008.
[5]
E. Malhotra, N. K. Kaushik, and H. S. Malhotra, “Synthesis and studies of ionic chelates of hafnocene with guanine,” Indian Journal of Chemistry, vol. 45, no. 2, pp. 370–376, 2006.
[6]
V. Muresan, L. S. Sbirna, S. Sbirna, C. I. Lepadatu, and N. Muresan, “Transition metal complexes with a new thioamide of the dibenzofuran series,” Acta Chimica Slovenica, vol. 48, no. 3, pp. 439–443, 2001.
[7]
A. Choudhary, R. Sharma, M. Nagar, and M. Mohsin, “Transition metal complexes with N, S donor ligands as synthetic antioxidants: synthesis, characterization and antioxidant activity,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 26, no. 3, pp. 394–403, 2011.
[8]
L. Tatar, D. Ulku, and O. Atakol, “Zinc(II) complexes of bidentate Schiff base ligands containing methoxyphenyl and nitrophenyl groups,” Acta Crystallographica C, vol. 55, part 4, pp. 508–510, 1999.
[9]
P. Piotr, H. Adam, P. Krystaian, B. Bogemil, and B. Franz, “Biological properties of schiff bases and azo derivatives of phenols,” Current Organic Chemistry, vol. 13, no. 2, pp. 124–148, 2009.
[10]
F. Shabani, L. A. Saghatforoush, and S. Ghammamy, “Synthesis, characterization and anti-tumour activity of iron(III) Schiff base complexes with unsymmetric tetradentate ligands,” Bulletin of the Chemical Society of Ethiopia, vol. 24, no. 2, pp. 193–199, 2010.
[11]
C. T. Supuran, “Complexes with biologically active ligands. Part 1. Synthesis of coordination compounds of diazoxide with transition- and main-group cations,” Metal-Based Drugs, vol. 3, no. 1, pp. 25–30, 1996.
[12]
S. Jain, N. K. Jain, and K. S. Pitre, “Electrochemical analysis of sparfloxacin in pharmaceutical formulation and biochemical screening of its Co(II) complex,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 5, pp. 795–801, 2002.
[13]
S. Chandra, D. Shukla, and L. K. Gupta, “Synthesis and spectroscopic studies of Co(II), Ni(II) and Cu(II) complexes with N donor(N4) macrocyclic ligand(DSLF),” Journal of Indian Chemical Society, vol. 85, pp. 800–806, 2008.
[14]
S. Malik, S. Ghosh, and L. Mitu, “Complexes of some 3d-metals with a Schiff base derived from 5-acetamido-1,3,4-thiadiazole-2-sulphonamide and their biological activity,” Journal of the Serbian Chemical Society, vol. 76, no. 10, pp. 1387–1394, 2011.
[15]
S. Ghosh, S. Malik, B. Jain, and M. Gupta, “Synthesis, spectral and pharmacological studies of some transition metal complexes derived from Schiff base of Acetazolamide drug,” Journal of Indian Chemical Society, vol. 89, pp. 471–478, 2012.
[16]
I. Vogel, Quantitative Inorganic Analysis, Longman Green and Co., London, UK, 1959.
[17]
V. Kumar and R. Dhakrey, “Synthesis and studies of some metal chelates with phenylglyoxal-4- iminoantipyrine(PGIA) and 4-N-(m-phenoxybenzylidene) amino antipyrine [4-N-(MPB)AAP],” Journal of Indian Council of Chemists, vol. 20, no. 1, pp. 61–68, 2003.
[18]
W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, pp. 81–122, 1971.
[19]
B. K. Kumar, V. Ravinder, G. B. Swamy, and S. J. Swamy, “Synthesis and characterization of iron(III), cobalt(II), nickel(II), copper(II), ruthenium(II, III), rhodium(III) and palladium(II) complexes with N-(2-carboxyphenyl)-and 2-amino-N-(2-carboxyphenyl)-benzamides,” Indian Journal of Chemistry A, vol. 33, pp. 136–142, 1994.
[20]
N. Bharti, S. S. Sharma, F. Naqui, and A. Azam, “New palladium(II) complexes of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones: synthesis, spectral studies and In vitro anti-Amoebic activity,” Bioorganic & Medicinal Chemistry, vol. 11, pp. 2923–2929, 2003.
[21]
K. Shankar, R. Roshni, K. Saravankumar, P. M. Reddy, and Y. Peng, “Synthesis of tetraaza macrocyclic PdII complexes; antibacterial and catalytic studies,” Journal of the Indian Chemical Society, vol. 86, no. 2, pp. 153–161, 2009.
[22]
M. L. H. Nair and L. Sharma, “Synthesis,spectral and thermal studies of Cu(II) complexes of azodyes derived from 2,3-dimethyl-1-phenyl-4-amino-5-pyrazolone,” Journal of the Indian Chemical Society, vol. 86, no. 2, pp. 133–138, 2009.
[23]
V. Reddy, N. Patil, and B. R. Patel, “Synthesis and characterization of Co(II), Ni(II), and Cu(II) complexes with O,N and S donar ligands,” Journal of Indian Council of Chemists, vol. 23, no. 2, pp. 1–3, 2006.
[24]
V. D. Bhat and A. Ray, “Synthesis, characterization and electrical conductivity of polyesters, polyamides and doped polymers,” Synthetic Metals, vol. 92, pp. 115–120, 1998.
[25]
D. Prakash, C. Kumar, S. Prakash, A. K. Gupta, and K. R. R. P. Singh, “Synthesis, spectral characterization and antimicrobial studies of some new binuclear complexes of CuII and NiII Schiff base,” Journal of Indian Chemical Society, vol. 86, no. 12, pp. 1257–1261, 2009.
[26]
N. Raman, S. Esthar, and C. Thangaraja, “A new Mannich base and its transition metal (II) complexes—synthesis, structural characterization and electrochemical study,” Journal of Chemical Sciences, vol. 116, no. 4, pp. 209–213, 2004.
[27]
R. Garg, N. Fahmi, and R. V. Singh, “Spectral and biocidal studies of manganese(II), dioxomolybdenum(VI) and oxovanadium(V) complexes with monobasic bidentate Schiff base ligands,” Journal of the Indian Chemical Society, vol. 86, pp. 670–678, 2009.
[28]
S. Z. Bootwala, “Synthesis and characterization of binuclear complexes of oxovanadium (IV), oxozirchonium(IV), dioxouranium(VI) and thorium(IV) with N,N′-bis [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene] biphenyl-4,4′-diamine,” Asian Journal of Chemistry, vol. 23, no. 12, pp. 5466–5470, 2011.
[29]
M. Revanasiddappa, C. Basavarajja, T. Suresh, and S. D. Angadi, “Synthetic, spectral and antimicrobial activity studies of first row transition metal complexes derived from lansoprazole drug,” Journal of the Indian Chemical Society, vol. 86, pp. 127–132, 2009.
[30]
C. A. Barnes and E. Bosch, “Synthesis and X-ray crystal structure of a complex formed by reaction of 1,2-bis(2′-pyridylethynyl)benzene and Mercury(II) Chloride,” Journal of Chemical Crystallographyy, vol. 36, no. 9, pp. 563–566, 2006.
[31]
M. M. H. Khalil, E. H. Ismail, G. G. Mohamed, E. M. Zayed, and A. Badr, “Synthesis and characterization of a novel Schiff base metal complexes and their applications in determination of iron in different types of natural water,” Open Journal of Inorganic Chemistry, vol. 2, pp. 13–21, 2012.
[32]
S. Chandra, S. Parmar, and Y. Kumar, “Synthesis, spectroscopic, and antimicrobial studies on bivalent zinc and mercury complexes of 2-formylpyridine thiosemicarbazone,” Bioinorganic Chemistry and Applications, vol. 2009, Article ID 851316, 6 pages, 2009.
[33]
T. Allen, Particle Size Measurement, Chapman & Hall, New York, NY, USA, 4th edition, 1990.
[34]
R. S. Joseyphus and M. S. Nair, “Antibacterial and antifungal studies on some Schiff base complexes of Zinc(II),” Mycobiology, vol. 36, no. 2, pp. 93–98, 2008.
[35]
K. Dua, M. V. Ramana, U. V. Singh Sara et al., “Investigation of enhancement of solubility of norfloxacin β-cyclodextrin in presence of acidic solubilizing additives,” Current Drug Delivery, vol. 4, no. 1, pp. 21–25, 2007.
[36]
M. M. Hania, “Synthesis and antibacterial activity of some transition metal complexes of oxime, semicarbazone and phenylhydrazone,” E-Journal of Chemistry, vol. 6, supplement 1, pp. S508–S514, 2009.
[37]
S. Biswas, T. Murugesan, K. Maiti, L. Ghosh, M. Pal, and B. P. Saha, “Study on the diuretic activity of Strychnos potatorum Linn. seed extract in albino rats,” Phytomedicine, vol. 8, no. 6, pp. 469–471, 2001.