%0 Journal Article %T Synthesis, Characterization, and Biological Evaluation of Some 3d-Metal Complexes of Schiff Base Derived from Xipamide Drug %A Suman Malik %A Suparna Ghosh %A Bharti Jain %A Archana Singh %A Mamta Bhattacharya %J International Journal of Inorganic Chemistry %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/549805 %X The present paper deals with the synthesis and characterization of metal complexes of Schiff base derived from xipamide, a diuretic drug. The bidentate ligand is derived from the inserted condensation of 5-aminosulfonyl-4-chloro-N-2,6-dimethyl phenyl-2-hydroxybenzamide (Xipamide) with salicylaldehyde in a 1£¿:£¿1 molar ratio. Using this bidentate ligand, complexes of Hg(II), Zn(II), and VO(IV) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using molar conductance, elemental analysis, magnetic susceptibility, FT-IR spectroscopy, electronic spectra, mass spectra, and particle size analysis. The elemental analysis data suggest the stoichiometry to be 1£¿:£¿2 [M£¿:£¿L]. All the complexes are nonelectrolytic in nature as suggested by molar conductance measurements. Infrared spectral data indicate the coordination between the ligand and the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. Spectral studies suggest tetrahedral geometry for Hg(II), Zn(II) complexes, and square pyramidal geometry for VO(IV) complex. The pure drug, synthesized ligand, and metal complexes were screened for their antifungal activities against Aspergillus niger and Aspergillus flavus. The ligand and its Hg(II) and VO(IV) complexes were screened for their diuretic activity too. 1. Introduction Coordination complexes are gaining importance in recent years especially in the designing of long acting drugs in metabolism. The metal complexes from bidentate ligands have often been studied recently because of their technical applications [1, 2] and applications in enhancement of drug action [3, 4]. Transition metals are essential for normal functioning of living organism and are, therefore, of great interest as potential drugs [5]. The coordination chemistry of nitrogen donor ligands is an active area of research. A great deal of attention in this area has been focused on the complexes formed by 3d metals with bidentate ligands using both sulfur and nitrogen [6, 7]. The Schiff bases are an important class of ligands in coordination chemistry. The study of structural and binding features of various Schiff base complexes can play an important role in better understanding of the complex biological process. Schiff bases derived from salicylaldehyde are well known for their interesting ligational properties and exclusive applications in different fields [8¨C10]. It is well known from the literature that Schiff bases derived from thiazide drugs have a strong ability to form metal complexes [11]. The %U http://www.hindawi.com/journals/ijic/2013/549805/