Tridentate chelate complexes of ML type (where M?=?Cu(II), Ni(II), and Co(II)) have been synthesized from triazine-based ligand 4,6-bis(5-mercapto-1,3,4-thiadiazol-amine)2-phenylamino-1,3,5-triazine (BMTDT). Microanalytical data, magnetic susceptibility measurements, IR, 1H NMR, UV-vis, mass, and EPR spectral techniques were used to characterise the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest that metal complexes show square pyramidal geometry. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation efficiency (SHG) of the ligand and metal complexes has been found to be higher than that of urea and KDP. The antimicrobial activity of the ligand and metal(II) complexes against the species Shigella, Chromobacterium, Staphylococcus aureus, Candida albicans, and Aspergillus niger has been carried out and compared with the standard one. 1. Introduction The rapid development of pathogen resistance to most of the known antibiotics is becoming a serious health problem [1]. One possible long-term solution is the development of agents that act on unexploited bacterial targets. S-triazine derivatives have received considerable attention due to their potent biological activity such as anticancer [2], estrogen receptor modulators [3], antivirals [4], and antimalarials [5, 6]. It has been reported that triazine derivatives possess potent antimicrobial activity [7, 8]. The compounds containing thiadiazole moiety have also been found to possess antitubercular and anti-inflammatory activities [9]. Hence, our aim is to synthesis a new derivative of triazine to enhance the pharmacological activities and nonlinear properties. Here, we present the synthesis, spectral characterization, bioscreening, nonlinear optical property, and fluorescence study of ligand derived from 2-amino-5-mercapto-1,3,4-thiadiazole-2-thiol and 2-phenylamino-1,3,5-triazine and its transition metal complexes. 2. Experimental All chemicals were obtained from Aldrich Chemical & Co. and used without purification. They included carbon disulphide, hydrazine hydrate, cyanuric chloride, Cu(II)Cl2·2H2O, Co(II)Cl2·6H2O, and Ni(II)Cl2·6H2O. The solvents ethanol, DMF, and DMSO were used after purification by the standard method described in the literature. The UV-vis spectra of the ligand and its metal complexes were recorded using a JASCO V-530
References
[1]
D. T. W. Chu, J. J. Plattner, and L. Katz, “New directions in antibacterial research,” Journal of Medicinal Chemistry, vol. 39, no. 20, pp. 3853–3874, 1996.
[2]
R. Menicagli, S. Samaritani, G. Signore, F. Vaglini, and L. Dalla Via, “In vitro cytotoxic activities of 2-alkyl-4,6-diheteroalkyl-1,3,5-triazines: new molecules in anticancer research,” Journal of Medicinal Chemistry, vol. 47, no. 19, pp. 4649–4652, 2004.
[3]
B. R. Henke, T. G. Consler, N. Go et al., “A new series of estrogen receptor modulators that display selectivity for estrogen receptor β,” Journal of Medicinal Chemistry, vol. 45, no. 25, pp. 5492–5505, 2002.
[4]
V. K. Pandey, S. Tusi, Z. Tusi, M. Joshi, and S. Bajpai, “Synthesis and biological activity of substituted 2,4,6-s-triazines,” Acta Pharmaceutica, vol. 54, no. 1, pp. 1–12, 2004.
[5]
N. P. Jensen, A. L. Ager, R. A. Bliss et al., “Phenoxypropoxybiguanides, prodrugs of DHFR-inhibiting diaminotriazine antimalarials,” Journal of Medicinal Chemistry, vol. 44, no. 23, pp. 3925–3931, 2001.
[6]
A. Agarwal, K. Srivastava, S. K. Puri, and P. M. S. Chauhan, “Syntheses of 2,4,6-trisubstituted triazines as antimalarial agents,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 3, pp. 531–533, 2005.
[7]
A. Ghaib, S. Ménager, P. Vérité, and O. Lafont, “Synthesis of variously 9,9-dialkylated octahydropyrimido [3,4-a]-s-triazines with potential antifungal activity,” Farmaco, vol. 57, no. 2, pp. 109–116, 2002.
[8]
T. Lübbers, P. Angehrn, H. Gmünder, S. Herzig, and J. Kulhanek, “Design, synthesis, and structure—activity relationship studies of ATP analogues as DNA gyrase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 10, no. 8, pp. 821–826, 2000.
[9]
J. G. Lombardino, E. H. Wiseman, and J. Chiaini, “Potent antiinflammatory N-heterocyclic 3-carboxamides of 4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide,” Journal of Medicinal Chemistry, vol. 16, no. 5, pp. 493–496, 1973.
[10]
R. J. Angellici, Synthesis and Techniques in Inorganic Chemistry, W.B. Saunders, 1969.
[11]
M. Yusuf, R. A. Khan, and B. Ahmed, “Syntheses and anti-depressant activity of 5-amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives,” Bioorganic and Medicinal Chemistry, vol. 16, no. 17, pp. 8029–8034, 2008.
[12]
A. Solankee, K. Kapadia, P. Solankee, Y. Prajapati, H. Patel, and S. Solankee, “Synthesis and studies of some novel s-triazine based aminopyrimidines, isoxazoles and 1,5-benzothiazepines,” Indian Journal of Chemistry B, vol. 46, no. 10, pp. 1707–1712, 2007.
[13]
S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” Journal of Applied Physics, vol. 39, no. 8, pp. 3798–3813, 1968.
[14]
W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971.
[15]
A. Solankee and I. Thakor, “Synthesis of pyrazolines, isoxazolines and aminopyrimidines as biological potent agents,” Indian Journal of Chemistry B, vol. 45, no. 2, pp. 517–522, 2006.
[16]
R. M. Issa, S. A. Azim, A. M. Khedr, and D. F. Draz, “Synthesis, characterization, thermal, and antimicrobial studies of binuclearmetal complexes of sulfa-guanidine Schiff bases,” Journal of Coordination Chemistry, vol. 62, no. 11, pp. 1859–1870, 2009.
[17]
A. B. P. Lever, Inorganic Spectroscopy, Elsevier, Amsterdam, The Netherlands, 1968.
[18]
M. Handa, T. Idehara, K. Nakano et al., “Study of the charge transfer band observed in dialkoxo-bridged binuclear copper (II) complexes,” Bulletin of the Chemical Society of Japan, vol. 65, no. 12, pp. 3241–3252, 1992.
[19]
Y. Yamada, H. Sakurai, Y. Miyashita, K. Fujisawa, and K. I. Okamoto, “Crystal structures, electronic absorption and reflectance spectral behaviors, and electrochemical properties of five-coordinated chlorocopper(II) complexes with 5,6-disubstituted-1,10-phenanthroline,” Polyhedron, vol. 21, no. 21, pp. 2143–2147, 2002.
[20]
E. R. Acu?a-Cueva, R. Faure, N. A. Illán-Cabeza, S. B. Jiménez-Pulido, M. N. Moreno-Carretero, and M. Quirós-Olozábal, “Synthesis and characterization of several lumazine derivative complexes of Co(II), Ni(II), Cu(II), Cd(II), Pd(II) and Pt(II). X-ray structures of a mononuclear copper complex and a dinuclear cadmium complex,” Inorganica Chimica Acta, vol. 351, no. 1, pp. 356–362, 2003.
[21]
D. N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Universities Press, 2001.
[22]
S. M. E. Khalil, “Synthesis, spectroscopic and magnetic studies on metal complexes of 5-methyl-3-(2-hydroxyphenyl)pyrazole,” Journal of Coordination Chemistry, vol. 56, no. 12, pp. 1013–1024, 2003.
[23]
P. Yang, Y. Yang, C. Zhang et al., “Synthesis, structure, and catalytic ethylene oligomerization of nickel(II) and cobalt(II) complexes with symmetrical and unsymmetrical 2,9-diaryl-1,10-phenanthroline ligands,” Inorganica Chimica Acta, vol. 362, no. 1, pp. 89–96, 2009.
[24]
L. K. Gupta and S. Chandra, “Spectroscopic characterization and EPR spectral studies on transition metal complexes with a novel tetradentate, 12-membered macrocyclic ligand,” Spectrochimica Acta A, vol. 65, no. 3-4, pp. 792–796, 2006.
[25]
R. Kannappan, R. Mahalakshmy, T. M. Rajendiran, R. Venkatesan, and P. Sambasiva Rao, “Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol,” Proceedings of Indian Academy of Chemical Society, vol. 115, no. 1, pp. 1–14, 2003.
[26]
K. Naresh Kumar and R. Ramesh, “Synthesis, luminescent, redox and catalytic properties of Ru(II) carbonyl complexes containing 2N2O donors,” Polyhedron, vol. 24, no. 14, pp. 1885–1892, 2005.
[27]
C. D. Sheela, C. Anitha, P. Tharmaraj, and D. Kodimunthri, “Synthesis, spectral characterization, and antimicrobial studies of metal complexes of the schiff base derived from [4-amino-N-guanylbenzene sulfonamide] and salicylaldehyde,” Journal of Coordination Chemistry, vol. 63, no. 5, pp. 884–893, 2010.
[28]
V. T. Kasumov and F. K?ksal, “Synthesis, spectroscopic characterization and redox reactivity of some transition metal complexes with salicylaldimines bearing 2,6-di-phenylphenol,” Spectrochimica Acta A, vol. 60, no. 1-2, pp. 31–39, 2004.
[29]
M. Jalali-Heravi, A. A. Khandar, and I. Sheikshoaie, “Theoretical investigation of the structure, electronic properties and second-order nonlinearity of some azo Schiff base ligands and their monoanions,” Spectrochimica Acta A, vol. 55, no. 12, pp. 2537–2544, 1999.
[30]
P. S. Patil, S. M. Dharmaprakash, K. Ramakrishna, H. K. Fun, R. Sai Santosh Kumar, and D. Narayana Rao, “Second harmonic generation and crystal growth of new chalcone derivatives,” Journal of Crystal Growth, vol. 303, no. 2, pp. 520–524, 2007.
[31]
M. Tümer, D. Ekinci, F. Tümer, and A. Bulut, “Synthesis, characterization and properties of some divalent metal(II) complexes: their electrochemical, catalytic, thermal and antimicrobial activity studies,” Spectrochimica Acta A, vol. 67, no. 63, pp. 916–929, 2007.
[32]
M. Muthukumar and P. Viswanathamurthi, “Spectral, catalytic, and antifungal studies of ruthenium(II) chalcone complexes,” Journal of Coordination Chemistry, vol. 63, no. 7, pp. 1263–1272, 2010.