Background. In this study, we evaluated the association between diastolic dysfunction severity and severity of cirrhosis in nonalcoholic cirrhotic patients. Methods. This cross-sectional study was conducted on all nonalcoholic cirrhotic patients who were admitted in Rasht Razi hospital the Cancer of Guilan Province, north of Iran, from January 2011 to March 2012. Severity of cirrhosis was evaluated by Child-Pugh score. A 12-lead surface ECG and echocardiographic studies were performed. We used a HDI 3000 (Philips ATL, Bothell, WA, USA) equipped with 2 to 4?MHz probes. Diastolic function was determined by an expert cardiac sonographer. Data were analyzed by SPSS for win (version16). A value less than 0.05 was considered significant. Results. Sixty-tree percent of patients were male. The mean age of patients was years. 22%, 38%, and 40% of patients were considered as child class A, B, and C, respectively. There was a significant relation between diastolic dysfunction and disease duration ( ), female gender ( ), age > 60 years ( ), and severity of cirrhosis ( ). On multivariate analysis, decreased E/A ratio ( ) and disease duration ( ) showed an independent significant relation. Conclusion. According to the relation between severity of cirrhosis and diastolic dysfunction, we recommend cardiac assessment in all child B and C cirrhotic patients. 1. Introduction Cirrhosis is a hepatic disease that presents in individuals aged 50–60 years, typically [1, 2]. Patients with liver cirrhosis are reported to have a hyperdynamic circulation, which is manifested as high cardiac output, decreased systemic vascular resistance, and widespread arterial vasodilatation, primarily [3, 4]. Based on many previous studies traditionally, cirrhosis is associated with cardiovascular abnormalities [5, 6]. Cirrhotic cardiomyopathy is the term used to describe a collection of characters expressive of abnormal heart structure and function in patients with cirrhosis [7, 8]. The term “cirrhotic cardiomyopathy” is generally defined by the following clinical criteria: (1) baseline increased cardiac output but blunted ventricular response to stimuli, (2) systolic and/or diastolic dysfunction, (3) absence of overt left ventricular failure at rest, and (4) electrophysiological abnormalities including prolonged QT interval on electrocardiography and chronotropic incompetence [9–11]. Many patients with cirrhosis exhibit various degrees of diastolic dysfunction. Diastolic relaxation is damaged in cirrhosis. Diastolic filling consists of two parts normally: rapid, early diastolic (active)
References
[1]
V. Valeriano, S. Funaro, R. Lionetti et al., “Modification of cardiac function in cirrhotic patients with and without ascites,” The American Journal of Gastroenterology, vol. 95, no. 11, pp. 3200–3205, 2000.
[2]
Z. Karasu, A. L. Mindiko?lu, and D. H. van Thiel, “Cardiovascular problems in cirrhotic patients,” Turkish Journal of Gastroenterology, vol. 15, no. 3, pp. 126–132, 2004.
[3]
H. J. Kowalski and W. H. Abelmann, “The cardiac output at rest in Laennec's cirrhosis,” The Journal of Clinical Investigation, vol. 32, no. 10, pp. 1025–1033, 1953.
[4]
D. Ziada, R. Gaber, N. Kotb, M. Ghazy, and H. Nagy, “Predictive value of N-terminal pro B-type natriuretic peptide in tissue doppler-diagnosed cirrhotic cardiomyopathy,” Heart Mirror Journal, vol. 5, no. 1, pp. 264–270, 2011.
[5]
S. M?ller and J. H. Henriksen, “The systemic circulation in cirrhosis,” in Ascites and Renal Dysfunction in Liver Disease, P. Gines, V. Arroyo, J. Rodes, and R. W. Schrier, Eds., pp. 139–155, Blackwell, Malden, Mass, USA, 2005.
[6]
S. M?ller and J. H. Henriksen, “Cardiovascular complications of cirrhosis,” Gut, vol. 57, no. 2, pp. 268–278, 2008.
[7]
M. Pozzi, S. Carugo, G. Boari et al., “Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites,” Hepatology, vol. 26, no. 5, pp. 1131–1137, 1997.
[8]
G. Finucci, A. Desideri, D. Sacerdoti et al., “Left ventricular diastolic function in liver cirrhosis,” Scandinavian Journal of Gastroenterology, vol. 31, no. 3, pp. 279–284, 1996.
[9]
H. Liu, D. Song, and S. S. Lee, “Cirrhotic cardiomyopathy,” Gastroentérologie Clinique et Biologique, vol. 26, no. 10, pp. 842–847, 2002.
[10]
S. A. Gaskari, H. Honar, and S. S. Lee, “Therapy insight: cirrhotic cardiomyopathy,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 3, no. 6, pp. 329–337, 2006.
[11]
Y. Iwakiri and R. J. Groszmann, “The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule,” Hepatology, vol. 43, no. 2, supplement 1, pp. S121–S131, 2006.
[12]
J. D. Carroll and O. M. Hess, “Assessment of normal and abnormal cardiac function,” in Braunwald's Heart Disease: A Text book of Cardiovascular Medicine, D. P. Zipes, P. Libby, R. O. Bonow, and E. Braunwald, Eds., vol. 2, p. 498, Elsevier Saunders, Philadelphia, Pa, USA, 7th edition, 2005.
[13]
R. F. Lee, T. K. Glenn, and S. S. Lee, “Cardiac dysfunction in cirrhosis,” Best Practice and Research: Clinical Gastroenterology, vol. 21, no. 1, pp. 125–140, 2007.
[14]
G. P. Aurigemma and W. H. Gaasch, “Clinical practice. Diastolic heart failure,” The New England Journal of Medicine, vol. 351, no. 11, pp. 1097–1105, 2004.
[15]
H. Q. Liu, S. A. Gaskari, and S. S. Lee, “Cardiac and vascular changes in cirrhosis: pathogenic mechanisms,” World Journal of Gastroenterology, vol. 12, no. 6, pp. 837–842, 2006.
[16]
S. M?ller and J. H. Henriksen, “Cardiovascular dysfunction in cirrhosis: pathophysiological evidence of a cirrhotic cardiomyopathy,” Scandinavian Journal of Gastroenterology, vol. 36, no. 8, pp. 785–794, 2001.
[17]
M. Torregrosa, S. Aguadé, L. Dos et al., “Cardiac alterations in cirrhosis: reversibility after liver transplantation,” Journal of Hepatology, vol. 42, no. 1, pp. 68–74, 2005.
[18]
S. S. Lee, “Cardiac abnormalities in liver cirrhosis,” Western Journal of Medicine, vol. 151, no. 5, pp. 530–535, 1989.
[19]
H. Kelbaek, J. Eriksen, and I. Brynjolf, “Cardiac performance in patients with asymptomatic alcoholic cirrhosis of the liver,” The American Journal of Cardiology, vol. 54, no. 7, pp. 852–855, 1984.
[20]
R. D. Grose, J. Nolan, J. E. Dillon et al., “Exercise-induced left ventricular dysfunction in alcoholic and non-alcoholic cirrhosis,” Journal of Hepatology, vol. 22, no. 3, pp. 326–332, 1995.
[21]
S. S. Lee, A. Hadengue, R. Moreau, R. Sayegh, P. Hillon, and D. Lebrec, “Postprandial hemodynamic responses in patients with cirrhosis,” Hepatology, vol. 8, no. 3, pp. 647–651, 1988.
[22]
M. R. Lunzer, S. P. Newman, A. G. Bernard, K. K. Manghani, S. P. Sherlock, and J. Ginsburg, “Impaired cardiovascular responsiveness in liver disease,” The Lancet, vol. 2, no. 7931, pp. 382–385, 1975.
[23]
M. Pozzi, E. Redaelli, L. Ratti et al., “Time-course of diastolic dysfunction in different stages of chronic HCV related liver diseases,” Minerva Gastroenterologica e Dietologica, vol. 51, no. 2, pp. 179–186, 2005.
[24]
M. F. Stoddard, A. C. Pearson, M. J. Kern, J. Ratcliff, D. G. Mrosek, and A. J. Labovitz, “Influence of alteration in preload on the pattern of left ventricular diastolic filling as assessed by Doppler echocardiography in humans,” Circulation, vol. 79, no. 6, pp. 1226–1236, 1989.
[25]
F. Wong, N. Girgrah, J. Graba, Y. Allidina, P. Liu, and L. Blendis, “The cardiac response to exercise in cirrhosis,” Gut, vol. 49, no. 2, pp. 268–275, 2001.
[26]
M. M. Redfield, S. J. Jacobsen, B. A. Borlaug, R. J. Rodeheffer, and D. A. Kass, “Age- and gender-related ventricular-vascular stiffening: a community-based study,” Circulation, vol. 112, no. 15, pp. 2254–2262, 2005.
[27]
G. M. A. Nasr, M. M. Eldin, and M. Ragheb, “Systolic and diastolic functions, QT interval and myocardial perfusion imaging in post-viral cirrhosis with and without ascites,” Heart Mirror Journal, vol. 2, no. 1, pp. 28–35, 2008.
[28]
A. H. R. El-AdI, M. Y. Abdel Aziz, and Y. A. Shaheen, “Age-related changes of the cardiac responses to liver cirrhosis,” Benha Medical Journal, vol. 20, no. 2, pp. 133–134, 2004.
[29]
S. Genovesi, D. M. Prata Pizzala, M. Pozzi et al., “QT interval prolongation and decreased heart rate variability in cirrhotic patients: relevance of hepatic venous pressure gradient and serum calcium,” Clinical Science, vol. 116, no. 11-12, pp. 851–859, 2009.
[30]
L. Achecar and A. Gonzalec-Tallon, “Relationship between circulatory dysfunction and severity of cardiomyopathy in patients with cirrhosis,” in Proceedings of the 46th Annual Meeting of the European Association for the Study of the Liver (EASL '11), 2011.
[31]
Z. Ma and S. S. Lee, “Cirrhotic cardiomyopathy: getting to the heart of the matter,” Hepatology, vol. 24, no. 2, pp. 451–459, 1996.
[32]
S. M?ller and J. H. Henriksen, “Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease,” Heart, vol. 87, no. 1, pp. 9–15, 2002.
[33]
N. Beyer, M. Aadahl, B. Strange et al., “Improved physical performance after orthotopic liver transplantation,” Liver Transplantation and Surgery, vol. 5, no. 4, pp. 301–309, 1999.
[34]
S. M?ller and J. H. Henriksen, “Cardiopulmonary complications in chronic liver disease,” World Journal of Gastroenterology, vol. 12, no. 4, pp. 526–538, 2006.