The modified Mackay (mM), the Grain-Watson (GW), Myrdal and Yalkovsky (MY), Lee and Kesler (LK), and Ambrose-Walton (AW) methods for estimating vapor pressures ( ) are tested against experimental data for a set of volatile organic compounds (VOC). required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species). It is found that the best method for each VOC depends on its functionality. 1. Introduction Atmospheric aerosols (AA) have a strong influence on the earth’s energy balance [1] and a great importance in the understanding of climate change and human health (respiratory and cardiac diseases, cancer). They are complex mixtures of inorganic and organic compounds, with composition varying over the size range from a few nanometers to several micrometers. Given this complexity and the desire to control AA concentration, models that accurately describe the important processes that affect size distribution are crucial. Therefore, the representation of particle size distribution is of interest in aerosol dynamics modeling. However, in spite of the impressive advances in the recent years, our knowledge of AA and physical and chemical processes in which they participate is still very limited, compared to the gas phase [2]. Several models have been developed that include a very thorough treatment of AA processes such as in Adams and Seinfeld [3], Gons et al. [4], and Whitby and McMurry [5]. Indeed, the evolution of size distribution of AA is made by a mathematical formulation of processes called the general dynamic equation (GDE). It is well known that the first step in developing a numerical aerosol model is to assemble expressions for the relevant physical processes. The second step is to approximate the particle size distribution with a mathematical size distribution function. Thus, the time evolution of the particle size distribution of aerosols undergoing coagulation, deposition, nucleation, and condensation/evaporation phenomena is finally governed by GDE [1]. This latter phenomenon is characterized by the mass flux for volatile species between gas phase and particle which is computed using the following expression [6]: describes the noncontinuous effects [7]. When ( ), there is condensation
References
[1]
J. Seinfeld and S. Pandis, Amospheric Chemestry and Physics: From a Pollution to Climate Change, John Wiley & Sons, New York, NY, USA, 1998.
[2]
M. Tombette, Modélisation des aérosols et de leurs propri?ltés optiques sur l'Europe et l'?le de France: validation, sensibilité et assimilation des données [Thèse], Ecole nationale des ponts et chaussées, 2007.
[3]
P. Adams and J. Seinfeld, “Predicting global aerosol size distributions in general circulation models,” Journal of Geophysical Research, vol. 107, no. 19, pp. AAC 4-1–AAC 4-23, 2002.
[4]
S. Gons, L. A. Barrie, J. P. Blanchet, et al., “Canadian aerosols module: a size-segregated simulation of atmospheric aerosol processes for climate to and air quality models. I Module development,” Journal of Geophysical Research, vol. 108, no. 1, pp. AAC 3-1–AAC 3-16, 2003.
[5]
E. R. Whitby and P. H. McMurry, “Modal aerosol dynamics modeling,” Aerosol Science and Technology, vol. 27, no. 6, pp. 673–688, 1997.
[6]
E. Debry, Modélisation et simulation de la dynamique des aérosols atmosphériques [Thèse], Ecole nationale des ponts et chaussées, 2004.
[7]
B. Dahneke, Theory of Dispersed Multiphase Flow, Academic press, New York, NY, USA, 1983.
[8]
E. Debry, K. Fahey, K. Sartelet, B. Sportisse, and M. Tombette, “Technical note: a new SIze REsolved Aerosol Model (SIREAM),” Atmospheric Chemistry and Physics, vol. 7, no. 6, pp. 1537–1547, 2007.
[9]
C. Tong, M. Blanco, W. A. Goddard III, and J. H. Seinfeld, “Thermodynamic properties of multifunctional oxygenates in atmospheric aerosols from quantum mechanics and molecular dynamics: dicarboxylic acids,” Environmental Science and Technology, vol. 38, no. 14, pp. 3941–3949, 2004.
[10]
T. Banerjee, M. K. Singh, and A. Khanna, “Prediction of binary VLE for imidazolium based ionic liquid systems using COSMO-RS,” Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3207–3219, 2006.
[11]
M. Diedenhofen, A. Klamt, K. Marsh, and A. Sch?fer, “Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids,” Physical Chemistry Chemical Physics, vol. 9, no. 33, pp. 4653–4656, 2007.
[12]
P. B. Myrdal and S. H. Yalkowsky, “Estimating pure component vapor pressures of complex organic molecules,” Industrial and Engineering Chemistry Research, vol. 36, no. 6, pp. 2494–2499, 1997.
[13]
R. J. Griffin, K. Nguyen, D. Dabdub, and J. H. Seinfeld, “A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation,” Journal of Atmospheric Chemistry, vol. 44, no. 2, pp. 171–190, 2003.
[14]
B. K. Pun, R. J. Griffin, C. Seigneur, and J. H. Seinfeld, “Secondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents,” Journal of Geophysical Research D, vol. 107, no. 17, pp. AAC 4-1–AAC 4-15, 2002.
[15]
M. E. Jenkin, “Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3,” Atmospheric Chemistry and Physics, vol. 4, no. 7, pp. 1741–1757, 2004.
[16]
D. Mackay, A. Bobra, D. W. Chan, and W. Y. Shiu, “Vapor pressure correlations for low-volatility environmental chemicals,” Environmental Science and Technology, vol. 16, no. 10, pp. 645–649, 1982.
[17]
J. F. Pankow and W. E. Asher, “SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds,” Atmospheric Chemistry and Physics, vol. 8, no. 10, pp. 2773–2796, 2008.
[18]
M. Capouet and J.-F. Müller, “A group contribution method for estimating the vapour pressures of α-pinene oxidation products,” Atmospheric Chemistry and Physics, vol. 6, no. 6, pp. 1455–1467, 2006.
[19]
M. Camredon and B. Aumont, “Assessment of vapor pressure estimation methods for secondary organic aerosol modeling,” Atmospheric Environment, vol. 40, no. 12, pp. 2105–2116, 2006.
[20]
S. Compernolle, K. Ceulemans, and J.-F. Müller, “Technical Note: vapor pressure estimation methods applied to secondary organic aerosol constituents from α-pinene oxidation: an intercomparison study,” Atmospheric Chemistry and Physics, vol. 10, no. 13, pp. 6271–6282, 2010.
[21]
M. H. Barley and G. McFiggans, “The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol,” Atmospheric Chemistry and Physics, vol. 10, no. 2, pp. 749–767, 2010.
[22]
L. E. Yu, M. L. Shulman, R. Kopperud, and L. M. Hildemann, “Characterization of organic compounds collected during Southeastern Aerosol and Visibility Study: water-soluble organic species,” Environmental Science and Technology, vol. 39, no. 3, pp. 707–715, 2005.
[23]
M. Jang and R. M. Kamens, “Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene,” Environmental Science and Technology, vol. 35, no. 18, pp. 3626–3639, 2001.
[24]
W. E. Asher, J. F. Pankow, G. B. Erdakos, and J. H. Seinfeld, “Estimating the vapor pressures of multi-functional oxygen-containing organic compounds using group contribution methods,” Atmospheric Environment, vol. 36, no. 9, pp. 1483–1498, 2002.
[25]
D. R. Lide, Handbook of Chemistry and Physics, 86th edition, 1997.
[26]
C. L. Yams, Hanbook of Vapour Pressure, Vols. 2 and 3, Guef Publishing Compagny, Houston, Tex, USA, 1994.
[27]
T. Boulik, V. Freid, and E. Hala, The Vapour Pressure of Pure Substances, Elsevier, Amsterdam, The Netherlands, 1984.
[28]
K. J. Joback and R. C. Reid, “Estimation of pure component properties from group contribution,” Chemical Engineering Communications, vol. 57, pp. 233–243, 1987.
[29]
P. W. Bruckmann and H. Willner, “Infrared spectroscopic study of peroxyacetyl nitrate (PAN) and its decomposition products,” Environmental Science and Technology, vol. 17, no. 6, pp. 352–357, 1983.
[30]
Y. Nannoolal, Development and critical evaluation of group contribution methods for the estimation of critical properties, liquid vapour pressure and liquid viscosity of organic compounds [Ph.D. thesis], University of Kwazulu Natal, 2006.
[31]
P. B. Myrdal, J. F. Krzyzaniak, and S. H. Yalkowsky, “Modified Trouton's rule for predicting the entropy of boiling,” Industrial and Engineering Chemistry Research, vol. 35, no. 5, pp. 1788–1792, 1996.
[32]
J. Vidal, Thermodynamique: Application au Génie Chimique et ?a l'industrie du Pétrolière, Technip, Paris, Farnce, 1997.
[33]
E. J. Baum, Chemical Property Estimation-Theory and Application, section 6.3, Lewis, Boca Raton, Fla, USA, 1998.
[34]
R. P. Schwarzenbasch, P. M. Gschwend, and D. M. Imboden, Environmental Organic Chemistry, John Wiley & Sons, New York, NY, USA, 2nd edition, 2003.
[35]
W. J. Lyman, Environmental Exposure from Chemicals, vol. 1, chapter 2, CRC Press, Boca Raton, Fla, USA, 1985.
[36]
S. H. Fishtine, “Reliable latent heats of vaporization,” Environmental Science & Technology, vol. 55, pp. 47–56, 1963.
[37]
C. F. Grain, “Vapor pressure,” in Handbook of Chemical Property Estimation Methods, chapter 14, McGraw-Hill, New York, NY, USA, 1982.
[38]
B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Iquids, McGraw-Hill, New York, NY, USA, 5th edition, 2001.
[39]
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, NY, USA, 4th edition, 1986.
[40]
D. Ambrose and J. Walton, “Vapor pressures up to their critical temperatures of normal alkanes and 1-alkohols,” Pure and Applied Chemistry, vol. 61, pp. 1395–1403, 1989.