%0 Journal Article %T Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols %A A. J. Komkoua Mbienda %A C. Tchawoua %A D. A. Vondou %A F. Mkankam Kamga %J International Journal of Geophysics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/612375 %X The modified Mackay (mM), the Grain-Watson (GW), Myrdal and Yalkovsky (MY), Lee and Kesler (LK), and Ambrose-Walton (AW) methods for estimating vapor pressures ( ) are tested against experimental data for a set of volatile organic compounds (VOC). required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species). It is found that the best method for each VOC depends on its functionality. 1. Introduction Atmospheric aerosols (AA) have a strong influence on the earth¡¯s energy balance [1] and a great importance in the understanding of climate change and human health (respiratory and cardiac diseases, cancer). They are complex mixtures of inorganic and organic compounds, with composition varying over the size range from a few nanometers to several micrometers. Given this complexity and the desire to control AA concentration, models that accurately describe the important processes that affect size distribution are crucial. Therefore, the representation of particle size distribution is of interest in aerosol dynamics modeling. However, in spite of the impressive advances in the recent years, our knowledge of AA and physical and chemical processes in which they participate is still very limited, compared to the gas phase [2]. Several models have been developed that include a very thorough treatment of AA processes such as in Adams and Seinfeld [3], Gons et al. [4], and Whitby and McMurry [5]. Indeed, the evolution of size distribution of AA is made by a mathematical formulation of processes called the general dynamic equation (GDE). It is well known that the first step in developing a numerical aerosol model is to assemble expressions for the relevant physical processes. The second step is to approximate the particle size distribution with a mathematical size distribution function. Thus, the time evolution of the particle size distribution of aerosols undergoing coagulation, deposition, nucleation, and condensation/evaporation phenomena is finally governed by GDE [1]. This latter phenomenon is characterized by the mass flux for volatile species between gas phase and particle which is computed using the following expression [6]: describes the noncontinuous effects [7]. When ( ), there is condensation %U http://www.hindawi.com/journals/ijge/2013/612375/