The paper aims at giving suggestions for a deterministic approach to investigate possible earthquake prediction and warning. A fundamental contribution can come by observations and physical modeling of earthquake precursors aiming at seeing in perspective the phenomenon earthquake within the framework of a unified theory able to explain the causes of its genesis, and the dynamics, rheology, and microphysics of its preparation, occurrence, postseismic relaxation, and interseismic phases. Studies based on combined ground and space observations of earthquake precursors are essential to address the issue. Unfortunately, up to now, what is lacking is the demonstration of a causal relationship (with explained physical processes and looking for a correlation) between data gathered simultaneously and continuously by space observations and ground-based measurements. In doing this, modern and/or new methods and technologies have to be adopted to try to solve the problem. Coordinated space- and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of Low-Earth-Orbit (LEO) satellites. Moreover, a new strong theoretical scientific effort is necessary to try to understand the physics of the earthquake. 1. Introduction In our opinion, the investigation of possible earthquake prediction must be carried out on a deterministic basis. Unfortunately, at the moment, the study of the physical conditions that give rise to an earthquake and the processes that precede a seismic rupture of an ordinary event are at a very preliminary stage and, consequently, the techniques of prediction of time of origin, epicentre, and magnitude of an impending earthquake now available are below standard. Therefore, the present level of knowledge is unable to achieve the objective of a deterministic prediction of an ordinary seismic event, but it certainly will in a more or less distant future tackle the problem with seriousness and avoiding scientifically incorrect, wasteful, and inconclusive shortcuts, as sometimes has been done. It will take long time (may be years, tens of years, or centuries) because this approach requires a great cultural, financial, and organizational effort on an international basis. It implies the need for carrying out combined ground and near-Earth space continuous observations of the so-called earthquake precursors, coseismic and postseismic phenomena, as well as the development of appropriate theoretical models able to justify the
References
[1]
Japanese National Police Agency, Countermeasures for the Great East Japan Earthquake, http://www.npa.go.jp/archive/keibi/biki/higaijokyo_e.pdf.
[2]
V. Sgrigna, A. Buzzi, L. Conti, P. Picozza, C. Stagni, and D. Zilpimiani, “Seismo-induced effects in the near-earth space: combined ground and space investigations as a contribution to earthquake prediction,” Tectonophysics, vol. 431, no. 1–4, pp. 153–171, 2007.
[3]
V. I. Keilis-Borok, “Intermediate-term earthquake prediction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 3748–3755, 1996.
[4]
V. I. Keilis Borok and A. Soloviev, Non Linear Dynamics of the Lithosphere and Earthquake Prediction, Springer, Berlin, Germany, 2003.
[5]
A. Peresan, V. Kossobokov, L. Romashkova, and G. F. Panza, “Intermediate-term middle-range earthquake predictions in Italy: a review,” Earth-Science Reviews, vol. 69, no. 1-2, pp. 97–132, 2005.
[6]
A. Tzanis and F. Vallianatos, “Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC,” Natural Hazards and Earth System Science, vol. 3, no. 3-4, pp. 179–195, 2003.
[7]
V. Sgrigna, R. Console, L. Conti, et al., “Preseismic natural emissions from the Earth’s surface and their effects in the near earth space, A project for monitoring earthquakes from Space,” American Geophysical Union, vol. 83, no. 19, article S356, 2002, abstract no. T22B-10.
[8]
V. Sgrigna, L. Carota, L. Conti et al., “Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observations,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 67, no. 15, pp. 1448–1462, 2005.
[9]
S. A. Pulinets, “Space technologies for short-term earthquake warning,” Advances in Space Research, vol. 37, no. 4, pp. 643–652, 2006.
[10]
M. Long, A. Lorenz, G. Rodgers, et al., “A cubesat derived design for a unique academic research mission in earthquake signature detection,” in Proceedings of the 16th Annual/USU Conference on Small Satellites, pp. 1–17, Logan, Utah, USA, August 2002.
[11]
M. Parrot, “The micro-satellite DEMETER,” Journal of Geodynamics, vol. 33, no. 4-5, pp. 535–541, 2002.
[12]
V. Sgrigna, “(Principal Investigator), esperia science team, ESPERIA phase a report,” Italian Space Agency (ASI), Program for Scientific Missions dedicated to Earth Sciences, Rome, Italy, 2001.
[13]
V. Sgrigna, A. Buzzi, L. Conti, P. Picozza, C. Stagni, and D. Zilpimiani, “The ESPERIA satellite project for detecting seismic-associated effects in the topside ionosphere. First instrumental tests in space,” Earth Planets and Space, vol. 60, pp. 463–475, 2009.
[14]
V. Sgrigna, the Ausonia Collaboration, The AUSONIA space project, Proposal submitted to the Italian Space Agency, 2008.
[15]
P. Picozza, (PAMELA/ARINA collaboration), The PAMELA Mission, 2003, http://wizard.roma2.infn.it/pamela/index.htm.
[16]
V. Sgrigna and V. Malvezzi, “Preseismic creep strains revealed by ground tilt measurements in central Italy on the occasion of the 1997 Umbria-Marche Apennines earthquake sequence,” Pure and Applied Geophysics, vol. 160, no. 8, pp. 1493–1515, 2003.
[17]
V. Sgrigna, C. D’ambrosio, and T. B. Yanovskaya, “Numerical modeling of preseismic slow movements of crustal blocks caused by quasi-horizontal tectonic forces,” Physics of the Earth and Planetary Interiors, vol. 129, pp. 313–324, 2002.
[18]
L. Conti, A. Buzzi, and A. M. Galper, “Influence of the seismic activity on the inner Van Allen radiation belt,” in Proceedings of the 10th Scientific Assembly of the International Association of Geomagnetism and Aeronomy (IAGA '05), p. 46, Toulose, France, July 2005, Session Division I, GA101: Monitoring earthquakes and volcanic activity by magnetic, electric and electromagnetic methods; IAGA2005-A-01518.
[19]
V. Sgrigna, “Description and testing of ARINA and LAZIO/EGLE instruments in space within the ESPERIA mission project and the DEMETER guest investigation programme,” in DEMETER Guest Investigator Workshop, Paris, France, May 2005.
[20]
T. Lay and T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, Calif, USA, 1995.
[21]
A. M. Nur, “Dilatation, pore fluids and premonitory variation of TP/TS travel time,” Bulletin of the Seismological Society of America, vol. 62, pp. 1217–1222, 1972.
[22]
C. H. Scholz, “A physical interpretation of the Haicheng earthquake prediction,” Nature, vol. 267, no. 5607, pp. 121–124, 1977.
[23]
V. I. Mjachkin, W. F. Brace, G. A. Sobolev, and J. H. Dieterich, “Two models for earthquake forerunners,” Pure and Applied Geophysics PAGEOPH, vol. 113, no. 1, pp. 169–181, 1975.
[24]
I. P. Dobrovolsky, S. I. Zubkov, and V. I. Miachkin, “Estimation of the size of earthquake preparation zones,” Pure and Applied Geophysics PAGEOPH, vol. 117, no. 5, pp. 1025–1044, 1979.
[25]
I. P. Dobrovolsky, N. I. Gershenzon, and M. B. Gokhberg, “Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake,” Physics of the Earth and Planetary Interiors, vol. 57, no. 1-2, pp. 144–156, 1989.
[26]
F. Bella, M. Caputo, G. Della Monica et al., “Crustal blocks and seismicity in the Central Apennines of Italy,” Nuovo Cimento della Societa Italiana di Fisica C, vol. 21, no. 6, pp. 597–607, 1998.
[27]
T. Rikitake, “Earthquake precursors,” Bulletin of the Seismological Society of America, vol. 65, pp. 1133–1162, 1975.
[28]
L. Conti, A. Cirella, V. Malvezzi, and V. Sgrigna, “A model for the propagation of preseismic electromagnetic fields through lithospheric and atmospheric media,” in Proceedings of the 1st General Assembly, European Geosciences Union, p. 337, Nice, France, April 2004.
[29]
R. G. Bilham, “Delays in the onset times of near-surface strain and tilt precursor to earthquakes,” in Earthquake Prediction: An International Review, P. J. Simpson and P. G. Richards, Eds., pp. 411–421, Geophysical Union, Washington, DC, USA, 1981.
[30]
F. Bella, P. F. Biagi, M. Caputo et al., “Very slow-moving crustal strain disturbances,” Tectonophysics, vol. 179, no. 1-2, pp. 131–139, 1990.
[31]
F. Bella, P. F. Biagi, M. Caputo et al., “Possible creep-related tilt precursors obtained in the Central Apennines (Italy) and in the Southern Caucasus (Georgia),” Pure and Applied Geophysics PAGEOPH, vol. 144, no. 2, pp. 277–300, 1995.
[32]
S. McHugh and M. J. S. Johnston, “A review of observations and dislocation modeling of some creep-related tilt perturbations from central California,” in Terrestrial and Space Techniques in earthquake Prediction, A. Vogel, Ed., pp. 181–201, Vieweg and Sohn, Braunschweig, Germany, 1979.
[33]
R. G. Bilham, J. Beavan, K. Evans, and K. Hurst, “Crustal deformation metrology at lamont-doherty geological observatory,” Earthquake Prediction Research, vol. 3, pp. 391–411, 1985.
[34]
W. Thatcher and N. Fujita, “Deformation of the mikata rhombus: strain buildup following the 1923 kanto earthquake, Central Honshu, Japan,” Journal of Geophysical Research, vol. 89, pp. 2102–2106, 1984.
[35]
S. Ozawa, T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire, “Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake,” Nature, vol. 475, no. 7356, pp. 373–377, 2011.
[36]
C. E. Mortensen and M. J. S. Johnston, “The nature of surface tilt along 85?km of the San Andreas fault-preliminary results form a 14-instrument array,” Pure and Applied Geophysics PAGEOPH, vol. 113, no. 1, pp. 237–249, 1975.
[37]
R. G. Bilham and R. J. Beavan, “Strains and tilts on crustal blocks,” Tectonophysics, vol. 52, no. 1–4, pp. 121–138, 1979.
[38]
A. Nur, H. Ron, and O. Scotti, “Fault mechanics and the kinematics of block rotations,” Geology, vol. 14, no. 9, pp. 746–749, 1986.
[39]
Y. Ida, “Slow-moving deformation pulses along tectonic faults,” Physics of the Earth and Planetary Interiors, vol. 9, no. 4, pp. 328–337, 1974.
[40]
A. K. Pevnev, “Earthquake prediction: geodetic aspects of the problem,” Izvestija Akademija Nauk SSSR. Fizika Zemli, vol. 12, pp. 88–98, 1988.
[41]
A. K. Pevnev, “Deterministic geodetic prediction of preparation areas of strong crustal earthquakes,” Earthquake Prediction, vol. 11, pp. 11–23, 1989.
[42]
F. Bella, R. Bella, P. F. Biagi, A. Ermini, and V. Sgrigna, “Possible precursory tilts preceding some earthquakes ( ) occurred in Central Italy between February 1981 and June 1983,” Earthquake Prediction Research, vol. 4, pp. 147–154, 1986.
[43]
F. Bella, P. F. Biagi, M. Caputo, G. Della Monica, A. Ermini, and V. Sgrigna, “Ground Tilt anomalies accompanying the main earthquakes occurred in the central apennines (Italy) during the period 1986–1989,” Il Nuovo Cimento C, vol. 16, no. 4, pp. 393–406, 1993.
[44]
R. J. Geller, “Debate on VAN,” Geophysical Research Letters, vol. 23, no. 11, 1996.
[45]
F. Salvini, “Block tectonics in thin-skin style-deformed regions: examples from structural data in the central apennines,” Annali di Geofisica, vol. 36, pp. 97–109, 1993.
[46]
F. Bella, P. F. Biagi, A. Ermini, V. Sgrigna, and P. Manjgaladze, “Possible propagation of tilt and strain anomalies: velocity and other characteristics,” Earthquake Prediction Research, vol. 4, pp. 195–209, 1986.
[47]
A. M. Gabrielov, T. A. Levshina, and I. M. Rotwain, “Block model of earthquake sequence,” Physics of the Earth and Planetary Interiors, vol. 61, no. 1-2, pp. 18–28, 1990.
[48]
V. P. Pustovetov and A. B. Malyshev, “Space-time correlation of earthquakes and high-energy particle flux variations in the inner radiation belt,” Cosmic Research, vol. 31, pp. 84–90, 1993.
[49]
E. A. Ginzburg, A. B. Malishev, I. P. Proshkina, and V. P. Pustovetov, “Correlation of strong earthquakes with radiation belt particle flux variations,” Geomagn Aeronomy, vol. 34, pp. 315–320, 1994.
[50]
A. M. Galper, S. V. Koldashov, and S. A. Voronov, “High energy particle flux variations as earthquake predictors,” Advances in Space Research, vol. 15, no. 11, pp. 131–134, 1995.
[51]
S. Y. Aleksandrin, A. M. Galper, L. A. Grishantzeva et al., “High-energy charged particle bursts in the near-Earth space as earthquake precursors,” Annales Geophysicae, vol. 21, no. 2, pp. 597–602, 2003.
[52]
M. Walt, Introduction to Geomagnetically Trapped Radiation, Cambridge University Press, 1994.
[53]
M. E. Aleshina, S. A. Voronov, A. M. Galper, et al., “Correlation between earthquake epicenters and regions of high-energy particle precipitations from the radiation belt,” Cosmic Research, vol. 30, no. 1, pp. 79–83, 1992.
[54]
M. Parrot, J. Achache, J. J. Berthelier et al., “High-frequency seismo-electromagnetic effects,” Physics of the Earth and Planetary Interiors, vol. 77, no. 1-2, pp. 65–83, 1993.
[55]
O. A. Molchanov and M. Hayakawa, “On the generation mechanism of ULF seismogenic electromagnetic emissions,” Physics of the Earth and Planetary Interiors, vol. 105, no. 3-4, pp. 201–210, 1998.
[56]
O. A. Molchanov and M. Hayakawa, “Subionospheric VLF signal perturbations possibly related to earthquakes,” Journal of Geophysical Research, vol. 103, pp. 17489–17504, 1998.
[57]
Y. J. Chuo, J. Y. Liu, S. A. Pulinets, and Y. I. Chen, “The ionospheric perturbations prior to the Chi-Chi and Chia-Yi earthquakes,” Journal of Geodynamics, vol. 33, no. 4-5, pp. 509–517, 2002.
[58]
V. Sgrigna, F. Altamura, S. Ascani et al., “First data from the EGLE experiment onboard the ISS,” Microgravity Science and Technology, vol. 19, no. 5-6, pp. 70–74, 2007.
[59]
M. J. S. Johnston and R. J. Mueller, “Seismomagnetic observation during the 8 July 1986 magnitude 5.9 North Palm Springs earthquake,” Science, vol. 237, no. 4819, pp. 1201–1203, 1987.
[60]
P. Varotsos, K. Alexopoulos, M. Lazaridou-Varotsou, and T. Nagao, “Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990,” Tectonophysics, vol. 224, no. 1–3, pp. 269–288, 1993.
[61]
K. Nomikos, F. Vallianatos, I. Kaliakatsos, E. Sideris, and M. Bakatsakis, “The latest aspects of telluric and electromagnetic variations associated with shallow and intermediate depth earthquakes in the South Aegean,” Annali di Geofisica, vol. 40, no. 2, pp. 361–374, 1997.
[62]
A. B. Draganov, U. S. Inan, and Y. N. Taranenko, “ULF magnetic signatures at the Earth surface due to ground water flow: a possible precursor to earthquakes,” Geophysical Research Letters, vol. 18, no. 6, pp. 1127–1130, 1991.
[63]
Y. Bernabé, “Streaming potential in heterogeneous networks,” Journal of Geophysical Research B, vol. 103, no. 9, pp. 20827–20841, 1998.
[64]
J. R. Bishop, “Piezoelectric effects in quartz-rich rocks,” Tectonophysics, vol. 77, no. 3-4, pp. 297–321, 1981.
[65]
P. Varotsos, N. Sarlis, M. Lazaridou, and P. Kapiris, “Transmission of stress induced electric signals in dielectric media,” Journal of Applied Physics, vol. 83, no. 1, pp. 60–70, 1998.
[66]
F. Freund, “Charge generation and propagation in igneous rocks,” Journal of Geodynamics, vol. 33, no. 4-5, pp. 543–570, 2002.
[67]
I. Stavrakas, C. Anastasiadis, D. Triantis, and F. Vallianatos, “Piezo stimulated currents in marble samples: precursory and concurrent-with-failure signals,” Natural Hazards and Earth System Science, vol. 3, no. 3-4, pp. 243–247, 2003.
[68]
Y. A. Kopytenko, T. G. Matiashvili, P. M. Voronov, E. A. Kopytenko, and O. A. Molchanov, “Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories,” Physics of the Earth and Planetary Interiors, vol. 77, no. 1-2, pp. 85–95, 1993.
[69]
A. C. Fraser-Smith, P. R. McGill, R. A. Helliwell, and O. G. Villard, “Ultra low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994,” Geophysical Research Letters, vol. 21, no. 20, pp. 2195–2198, 1994.
[70]
V. S. Ismaguilov, Y. A. Kopytenko, K. Hattori, P. M. Voronov, O. A. Molchanov, and M. Hayakawa, “ULF magnetic emissions connected with under sea bottom earthquakes,” Natural Hazards and Earth System Sciences, vol. 1, pp. 23–31, 2001.
[71]
K. Ohta, K. Umeda, N. Watanabe, and M. Hayakawa, “ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan,” Natural Hazards and Earth System Sciences, vol. 1, pp. 37–42, 2001.
[72]
J. W. Warwick, C. Stoker, and T. R. Meyer, “Radio emission associated with rock fracture: possible application to the great Chilean Earthquake of May 22, 1960,” Journal of Geophysical Research, vol. 87, no. 4, pp. 2851–2859, 1982.
[73]
K. Oike and T. Ogawa, “Electromagnetic radiations from shallow earthquakes observed in the LF range,” Journal of Geomagnetism & Geoelectricity, vol. 38, no. 10, pp. 1031–1040, 1986.
[74]
M. J. S. Johnston, “Review of electric and magnetic fields accompanying seismic and volcanic activity,” Surveys in Geophysics, vol. 18, no. 5, pp. 441–475, 1997.
[75]
S. Uyeda, K. S. Al-Damegh, E. Dologlou, and T. Nagao, “Some relationship between VAN seismic electric signals (SES) and earthquake parameters,” Tectonophysics, vol. 304, no. 1-2, pp. 41–55, 1999.
[76]
K. Eftaxias, P. Kapiris, J. Polygiannakis et al., “Experience of short term earthquake precursors with VLF-VHF electromagnetic emissions,” Natural Hazards and Earth System Science, vol. 3, no. 3-4, pp. 217–228, 2003.
[77]
F. Vallianatos, D. Triantis, A. Tzanis, C. Anastasiadis, and I. Stavrakas, “Electric earthquake precursors: from laboratory results to field observations,” Physics and Chemistry of the Earth, vol. 29, no. 4–9, pp. 339–351, 2004.
[78]
A. Nardi and M. Caputo, “Perspective electric earthquake precursors observed in the Apennines,” in Proceedings of the 8th Workshop on Non Linear Dynamics and Earthquake Prediction, ICTP, October 2005.
[79]
A. Nardi and M. Caputo, “Perspective electric earthquake precursors observed in the Apennines,” Bollettino di Geofisica Teorica ed Applicata, vol. 47, pp. 3–12, 2006.
[80]
S. K. Park, M. J. S. Johnston, T. R. Madden, F. D. Morgan, and H. F. Morrison, “Electromagnetic precursors to earthquakes in the ulf band: a review of observations and mechanisms,” Reviews of Geophysics, vol. 31, no. 2, pp. 117–132, 1993.
[81]
M. Merzer and S. L. Klemperer, “Modeling low-frequency magnetic-field precursors to the Loma Prieta earthquake with a precursory increase in fault-zone conductivity,” Pure and Applied Geophysics, vol. 150, no. 2, pp. 217–248, 1997.
[82]
V. Surkov, “ULF electromagnetic perturbations resulting from the fracture and dilatancy in the earthquake preparation zone,” in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, M. Hayakawa, Ed., pp. 371–382, TERRAPUB, Tokyo, Japan, 1999.
[83]
M. Hayakawa, Y. Kopytenko, N. Smirnova, V. Troyan, and T. Peterson, “Monitoring ULF magnetic disturbances and schemes for recognizing earthquake precursors,” Physics and Chemistry of the Earth, Part A, vol. 25, no. 3, pp. 263–269, 2000.
[84]
F. Freund, “On the electrical conductivity structure of the stable continental crust,” Journal of Geodynamics, vol. 35, no. 3, pp. 353–388, 2003.
[85]
G. Areshidze, F. Bella, P. F. Biagi et al., “Anomalies in geophysical and geochemical parameters revealed on the occasion of the Paravani ( ) and Spitak ( ) earthquakes (Caucasus),” Tectonophysics, vol. 202, no. 1, pp. 23–41, 1992.
[86]
Z. Guo, B. Liu, and Y. Wang, “Mechanism of electromagnetic emissions associated with microscopic and macroscopic cracking in rocks,” in Electromagnetic Phenomena Related to Earthquake Prediction, M. Hayakawa, Ed., pp. 523–529, TERRAPUB, Tokyo, Japan, 1994.
[87]
F. T. Freund, A. Takeuchi, and B. W. S. Lau, “Electric currents streaming out of stressed igneous rocks—a step towards understanding pre-earthquake low frequency EM emissions,” Physics and Chemistry of the Earth, vol. 31, no. 4–9, pp. 389–396, 2006.
[88]
K. Eftaxias, V. Sgrigna, and T. Chelidze, “Mechanical and electromagnetic phenomena accompanying pre-seismic deformation: from laboratory to geophysical scale,” Tectonophysics, vol. 431, no. 1–4, pp. 1–5, 2007.
[89]
O. A. Molchanov, O. A. Mazhaeva, A. N. Golyavin, and M. Hayakawa, “Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes,” Annales Geophysicae, vol. 11, pp. 431–440, 1993.
[90]
C. J. Rodger, R. L. Dowden, and N. R. Thomson, “Observations of electromagnetic activity associated with earthquakes by low-altitude satellites,” in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, M. Hayakawa, Ed., pp. 697–710, TERRAPUB, Tokyo, Japan, 1999.
[91]
M. B. Gokhberg, V. A. Morgounov, and E. L. Aronov, “On the high frequency electromagnetic radiation during seismic activity,” Dokladi Akademii Nauk USSR, vol. 248, pp. 1077–1081, 1979.
[92]
V. I. Larkina, V. V. Migulin, O. A. Molchanov, I. P. Kharkov, A. S. Inchin, and V. V. Schvetsova, “Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones,” Physics of the Earth and Planetary Interiors, vol. 57, pp. 100–109, 1989.
[93]
M. Parrot and M. M. Mogilevsky, “VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere,” Physics of the Earth and Planetary Interiors, vol. 57, no. 1-2, pp. 86–99, 1989.
[94]
S. V. Bilichenko, F. S. Iljin, E. F. Kim, et al., “ULF response of the ionosphere for earthquake preparation processes,” Doklady Akademii Nauk USSR, vol. 311, pp. 1077–1080, 1990.
[95]
O. N. Serebryakova, S. V. Bilichenko, V. M. Chmyrev, et al., “Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellite,” Geophysical Research Letters, vol. 19, pp. 91–94, 1992.
[96]
V. M. Chmyrev, N. V. Isaev, O. N. Serebryakova, V. M. Sorokin, and Y. P. Sobolev, “Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 59, no. 9, pp. 967–974, 1997.
[97]
C. C. Lee, J. Y. Liu, C. J. Pan, and K. Igarashi, “The heights of sporadic-E layer simultaneously observed by the VHF radar and ionosondes in Chung-Li,” Geophysical Research Letters, vol. 27, no. 5, pp. 641–644, 2000.
[98]
S. A. Pulinets, K. A. Boyarchuk, V. V. Hegai, V. P. Kim, and A. M. Lomonosov, “Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling,” Advances in Space Research, vol. 26, no. 8, pp. 1209–1218, 2000.
[99]
M. Hayakawa, O. A. Molchanov, and A. P. Nikolaenko, “Model variations in atmospheric radio noise caused by preseismic modifications of tropospheric conductivity profile,” in Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, M. Hayakawa and O. A. Molchanov, Eds., pp. 349–352, TERRAPUB, Tokyo, Japan, 2002.
[100]
A. Buzzi, L. Conti, A. M. Galper, et al., “Sismo-electromagnetic emissions,” in Proceedings of the NATO Advances Study. Institute on ‘Sprites, Elves and Intense Lightning Discharges’, M. Fullekrug, E. A. Mareev, and M. J. Rycroft, Eds., vol. 225 of NATO Science Series II: Mathematics, Physics and Chemistry, pp. 388–389, Springer, 2006.
[101]
M. Parrot, “Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events,” Journal of Geophysical Research, vol. 99, pp. 23339–23347, 1994.
[102]
M. A. Fenoglio, M. J. S. Johnston, and J. D. Byerlee, “Magnetic and electric fields associated with changes in high pore pressure in fault zones: application to the Loma Prieta ULF emissions,” Journal of Geophysical Research, vol. 100, no. 7, pp. 12–958, 1995.
[103]
O. A. Molchanov, M. Hayakawa, and V. A. Rafalsky, “Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere and magnetosphere,” Journal of Geophysical Research, vol. 100, pp. 1691–1712, 1995.
[104]
R. Teisseyre, “Generation of electric field in an earthquake preparation zone,” Annali di Geofisica, vol. 40, no. 2, pp. 297–304, 1997.
[105]
V. V. Grimalsky, I. A. Kremenetsky, and Y. G. Rapoport, “Excitation of EMW in the lithosphere and propagation into magnetosphere,” in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, M. Hayakawa, Ed., pp. 777–787, TERRAPUB, Tokyo, Japan, 1999.
[106]
F. Vallianatos and A. Tzanis, “A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus,” in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, M. Hayakawa, Ed., pp. 287–305, TERRAPUB, Tokyo, Japan, 1999.
[107]
V. M. Sorokin, V. M. Chmyrev, and A. K. Yaschenko, “Electrodynamic model of the lower atmosphere and the ionosphere coupling,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 63, pp. 1681–1691, 2001.
[108]
N. Gershenzon and G. Bambakidis, “Modeling of seismo-electromagnetic phenomena,” Russian Journal of Earth Sciences, vol. 3, pp. 247–275, 2001.
[109]
Y. Fujinawa, T. Matsumoto, and K. Takahashi, “Modeling confined pressure changes inducing anomalous electromagnetic fields related with earthquakes,” Journal of Applied Geophysics, vol. 49, no. 1-2, pp. 101–110, 2002.
[110]
J. Y. Liu, Y. I. Chen, Y. J. Chuo, and C. S. Chen, “A statistical investigation of preearthquake ionospheric anomaly,” Journal of Geophysical Research A, vol. 111, no. 5, Article ID A05304, 2006.
[111]
K. Heki, “Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake,” Geophysical Research Letters, vol. 8, Article ID L17312, 5 pages, 2011.
[112]
H. Tsuji, Y. Hatanaka, T. Sagiya, and M. Hashimoto, “Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki earthquake monitored by a nationwide continuous GPS array in Japan,” Geophysical Research Letters, vol. 22, no. 13, pp. 1669–1672, 1995.
[113]
E. Blanc, “Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary,” Annales Geophysicae, vol. 3, no. 6, pp. 673–688, 1985.
[114]
Y. Zaslavski, M. Parrot, and E. Blanc, “Analysis of TEC measurements above active seismic regions,” Physics of the Earth and Planetary Interiors, vol. 105, pp. 219–228, 1998.
[115]
A. M. Galper, V. B. Dimitrenko, N. V. Nikitina, V. M. Grachev, and S. E. Ulin, “Interrelation between high-energy charged particle fluxes in the radiation belt and seismicity of the earth,” Cosmic Research, vol. 27, article 789, 1989.
[116]
S. A. Voronov, A. M. Galper, S. V. Koldashov, et al., “Increases in high energy charged particle fluxes near the South Atlantic magnetic anomaly and the seismicity of the earth,” Cosmic Research, vol. 28, pp. 789–791, 1990.
[117]
Y. I. Galperin, V. A. Gladyshev, N. V. Jordjio, and V. I. Larkina, “Precipitation of high-energy captured particles in the magnetosphere above the epicenter of an incipient earthquake,” Cosmic Research, vol. 30, pp. 89–106, 1992.
[118]
A. Buzzi, M. Parrot, and J. A. Sauvaud, “Precipitation of particles by intense electromagnetic harmonic waves during magnetic storms,” in Proceedings of the International Demeter Workshop, Toulouse, France, June 2006.
[119]
V. V. Krechetov, “Cerenkov radiation of protons in the magnetosphere as a source of VLF waves preceding an earthquake,” Geomagnetism and Aeronomy, vol. 35, no. 5, pp. 688–691, 1996.
[120]
M. Hayakawa and H. Sato, “Ionospheric perturbations associated with earthquakes, as detected by sub-ionospheric VLF propagation,” in Electromagnetic Phenomena Related to Earthquake Prediction, M. Hayakawa and Y. Fujinawa, Eds., pp. 391–397, TERRAPUB, Tokyo, Japan, 1994.
[121]
V. A. Morgounov, T. Ondoh, and S. Nagai, “Anomalous variation of VLF signals associated with strong earthquakes ,” in Electromagnetic Phenomena Related to Earthquake Prediction, M. Hayakawa and Y. Fujinawa, Eds., pp. 409–428, TERRAPUB, Tokyo, Japan, 1994.
[122]
I. Gufeld, G. Gusev, and O. Pokhotelov, “Is the prediction of earthquake dates possible by the VLF radiowave monitoring method?” in Electromagnetic Phenomena Related to Earthquake Prediction, M. Hayakawa and Y. Fujinawa, Eds., pp. 381–389, TERRAPUB, Tokyo, Japan, 1994.
[123]
H. Fujiwara, M. Kamogawa, M. Ikeda et al., “Atmospheric anomalies observed during earthquake occurrences,” Geophysical Research Letters, vol. 31, Article ID L17110, 4 pages, 2004.