全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes?

DOI: 10.1155/2012/406357

Full-Text   Cite this paper   Add to My Lib

Abstract:

For years, the study of gene expression regulation of plants in response to stress conditions has been focused mainly on the analysis of transcriptional changes. However, the knowledge on translational regulation is very scarce in these organisms, despite in plants, as in the rest of the eukaryotes, translational regulation has been proven to play a pivotal role in the response to different stresses. Regulation of protein synthesis under abiotic stress was thought to be a conserved process, since, in general, both the translation factors and the translation process are basically similar in eukaryotes. However, this conservation is not so clear in plants as the knowledge of the mechanisms that control translation is very poor. Indeed, some of the basic regulators of translation initiation, well characterised in other systems, are still to be identified in plants. In this paper we will focus on both the regulation of different initiation factors and the mechanisms that cellular mRNAs use to bypass the translational repression established under abiotic stresses. For this purpose, we will review the knowledge from different eukaryotes but paying special attention to the information that has been recently published in plants. 1. Introduction One of the main responses of cells to stress conditions involves partial or virtually total cessation of energetically consumptive processes normally vital to homeostasis, including transcription and protein synthesis. Translation consumes a substantial amount of cellular energy and, therefore, it is one of the main targets to be inhibited in response to most, if not all, types of cellular stresses. However, under conditions where global protein synthesis is severely compromised, some proteins are still synthesised as part of the mechanisms of cell survival, as these proteins are able to mitigate the damage caused by the stress and enable cells to tolerate the stressful conditions more effectively [1]. Appearance of abiotic stresses, as environmental conditions, is in many cases sudden. Therefore, a quick response to stress should be established to assure cell survival. In such a context, translational regulation of preexisting mRNAs provides a prompt and alternative way to control gene expression, as compared to other slower cellular processes such as mRNA transcription, processing, and transport to cytoplasm [2]. In animals and yeast, there are many known examples of global translational inhibition and preferential production of key proteins critical for survival under different abiotic insults [3–8]. This scenario

References

[1]  M. Holcik and N. Sonenberg, “Translational control in stress and apoptosis,” Nature Reviews Molecular Cell Biology, vol. 6, no. 4, pp. 318–327, 2005.
[2]  T. E. Graber and M. Holcik, “Cap-independent regulation of gene expression in apoptosis,” Molecular BioSystems, vol. 3, no. 12, pp. 825–834, 2007.
[3]  M. B. Al-Fageeh and C. M. Smales, “Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems,” Biochemical Journal, vol. 397, no. 2, pp. 247–259, 2006.
[4]  J. Sun, C. S. Conn, Y. Han, V. Yeung, and S.-B. Qian, “PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation,” Journal of Biological Chemistry, vol. 286, no. 8, pp. 6791–6800, 2011.
[5]  L. M. Castelli, J. Lui, S. G. Campbell et al., “Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated,” Molecular Biology of the Cell, vol. 22, no. 18, pp. 3379–3393, 2011.
[6]  W. V. Gilbert, K. Zhou, T. K. Butler, and J. A. Doudna, “Cap-independent translation is required for starvation-induced differentiation in yeast,” Science, vol. 317, no. 5842, pp. 1224–1227, 2007.
[7]  L. Liu and M. C. Simon, “Regulation of transcription and translation by hypoxia,” Cancer Biology and Therapy, vol. 3, no. 6, pp. 492–497, 2004.
[8]  S. Braunstein, K. Karpisheva, C. Pola et al., “A Hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer,” Molecular Cell, vol. 28, no. 3, pp. 501–512, 2007.
[9]  M. Floris, H. Mahgoub, E. Lanet, C. Robaglia, and B. Menand, “Post-transcriptional regulation of gene expression in plants during abiotic stress,” International Journal of Molecular Sciences, vol. 10, no. 7, pp. 3168–3185, 2009.
[10]  C. Branco-Price, K. A. Kaiser, C. J. H. Jang, C. K. Larive, and J. Bailey-Serres, “Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana,” Plant Journal, vol. 56, no. 5, pp. 743–755, 2008.
[11]  S. Dhaubhadel, K. S. Browning, D. R. Gallie, and P. Krishna, “Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress,” Plant Journal, vol. 29, no. 6, pp. 681–691, 2002.
[12]  R. Sormani, E. Delannoy, S. Lageix et al., “Sublethal cadmium intoxication in Arabidopsis thaliana impacts translation at multiple levels,” Plant and Cell Physiology, vol. 52, no. 2, pp. 436–447, 2011.
[13]  M. Nicola?, M. A. Roncato, A. S. Canoy et al., “Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control,” Plant Physiology, vol. 141, no. 2, pp. 663–673, 2006.
[14]  H. Matsuura, U. Kiyotaka, Y. Ishibashi et al., “A short period of mannitol stress but not LiCl stress led to global translational repression in plants,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 10, pp. 2110–2112, 2010.
[15]  R. J. Jackson, C. U. T. Hellen, and T. V. Pestova, “The mechanism of eukaryotic translation initiation and principles of its regulation,” Nature Reviews Molecular Cell Biology, vol. 11, no. 2, pp. 113–127, 2010.
[16]  R. C. Wek, H. Y. Jiang, and T. G. Anthony, “Coping with stress: EIF2 kinases and translational control,” Biochemical Society Transactions, vol. 34, no. 1, pp. 7–11, 2006.
[17]  M. J. Clemens, “Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis,” Progress in Molecular and Subcellular Biology, vol. 27, pp. 57–89, 2001.
[18]  M. J. Clemens, “Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins,” Journal of Cellular and Molecular Medicine, vol. 5, no. 3, pp. 221–239, 2001.
[19]  P. Zhang, B. C. McGrath, J. Reinert et al., “The GCN2 eIF2α kinase is required for adaptation to amino acid deprivation in mice,” Molecular and Cellular Biology, vol. 22, no. 19, pp. 6681–6688, 2002.
[20]  H. P. Harding, M. Calfon, F. Urano, I. Novoa, and D. Ron, “Transcriptional and translational control in the mammalian unfolded protein response,” Annual Review of Cell and Developmental Biology, vol. 18, pp. 575–599, 2002.
[21]  M. J. Clemens, “PKR—a protein kinase regulated by double-stranded RNA,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 7, pp. 945–949, 1997.
[22]  J. J. Chen, “Regulation of protein synthesis by the heme-regulated eIF2α kinase: relevance to anemias,” Blood, vol. 109, no. 7, pp. 2693–2699, 2007.
[23]  K. Zhan, J. Narasimhan, and R. C. Wek, “Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe,” Genetics, vol. 168, no. 4, pp. 1867–1875, 2004.
[24]  S. Lageix, E. Lanet, M. N. Pouch-Pélissier et al., “Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding,” BMC Plant Biology, vol. 8, article no. 134, 2008.
[25]  Y. Zhang, Y. Wang, K. Kanyuka, M. A. J. Parry, S. J. Powers, and N. G. Halford, “GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis,” Journal of Experimental Botany, vol. 59, no. 11, pp. 3131–3141, 2008.
[26]  H. J. Hiddinga, C. J. Crum, Jie Hu, and D. A. Roth, “Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase,” Science, vol. 241, no. 4864, pp. 451–453, 1988.
[27]  J. O. Langland, L. A. Langland, K. S. Browning, and D. A. Roth, “Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4539–4544, 1996.
[28]  J. O. Langland, Jin Song, B. L. Jacobs, and D. A. Roth, “Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase,” Plant Physiology, vol. 108, no. 3, pp. 1259–1267, 1995.
[29]  C. J. Crum, J. Hu, H. J. Hiddinga, and D. A. Roth, “Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity,” Journal of Biological Chemistry, vol. 263, no. 26, pp. 13440–13443, 1988.
[30]  D. R. Gallie, H. Le, C. Caldwell, R. L. Tanguay, N. X. Hoang, and K. S. Browning, “The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat,” Journal of Biological Chemistry, vol. 272, no. 2, pp. 1046–1053, 1997.
[31]  M. Altmann, N. Schmitz, C. Berset, and H. Trachsel, “A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E,” EMBO Journal, vol. 16, no. 5, pp. 1114–1121, 1997.
[32]  G. P. Cosentino, T. Schmelzle, A. Haghighat, S. B. Helliwell, M. N. Hall, and N. Sonenberg, “Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4604–4613, 2000.
[33]  E. S. Mardanova, L. A. Zamchuk, M. V. Skulachev, and N. V. Ravin, “The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site,” Gene, vol. 420, no. 1, pp. 11–16, 2008.
[34]  T. D. Dinkova, H. Zepeda, E. Martínez-Salas, L. M. Martínez, J. Nieto-Sotelo, and E. Sánchez De Jiménez, “Cap-independent translation of maize Hsp101,” Plant Journal, vol. 41, no. 5, pp. 722–731, 2005.
[35]  E. L. P. Kneller, A. M. Rakotondrafara, and W. A. Miller, “Cap-independent translation of plant viral RNAs,” Virus Research, vol. 119, no. 1, pp. 63–75, 2006.
[36]  D. Deprost, L. Yao, R. Sormani et al., “The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation,” EMBO Reports, vol. 8, no. 9, pp. 864–870, 2007.
[37]  M. A. Freire, “Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex,” Gene, vol. 345, no. 2, pp. 271–277, 2005.
[38]  M. A. Freire, C. Tourneur, F. Granier et al., “Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein,” Plant Molecular Biology, vol. 44, no. 2, pp. 129–140, 2000.
[39]  M. Montero-Lomelí, B. L. B. Morais, D. L. Figueiredo, D. C. S. Neto, J. R. P. Martins, and C. A. Masuda, “The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21542–21548, 2002.
[40]  N. Sanan-Mishra, X. H. Pham, S. K. Sopory, and N. Tuteja, “Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 2, pp. 509–514, 2005.
[41]  A. G. Hinnebusch, “Translational regulation of GCN4 and the general amino acid control of yeast,” Annual Review of Microbiology, vol. 59, pp. 407–450, 2005.
[42]  H. P. Harding, I. Novoa, Y. Zhang et al., “Regulated translation initiation controls stress-induced gene expression in mammalian cells,” Molecular Cell, vol. 6, no. 5, pp. 1099–1108, 2000.
[43]  J. Pelletier and N. Sonenberg, “Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA,” Nature, vol. 334, no. 6180, pp. 320–325, 1988.
[44]  J. Pelletier, G. Kaplan, V. R. Racaniello, and N. Sonenberg, “Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region,” Molecular and Cellular Biology, vol. 8, no. 3, pp. 1103–1112, 1988.
[45]  S. K. Jang, H. G. Krausslich, M. J. H. Nicklin, G. M. Duke, A. C. Palmenberg, and E. Wimmer, “A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation,” Journal of Virology, vol. 62, no. 8, pp. 2636–2643, 1988.
[46]  K. A. Spriggs, M. Stoneley, M. Bushell, and A. E. Willis, “Re-programming of translation following cell stress allows IRES-mediated translation to predominate,” Biology of the Cell, vol. 100, no. 1, pp. 27–38, 2008.
[47]  A. A. Komar and M. Hatzoglou, “Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states,” Cell Cycle, vol. 10, no. 2, pp. 229–240, 2011.
[48]  R. Vanderhaeghen, R. De Clercq, M. Karimi, M. Van Montagu, P. Hilson, and M. Van Lijsebettens, “Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation,” FEBS Letters, vol. 580, no. 11, pp. 2630–2636, 2006.
[49]  I. N. Shatsky, S. E. Dmitriev, I. M. Terenin, and D. E. Andreev, “Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs,” Molecules and Cells, vol. 30, no. 4, pp. 285–293, 2010.
[50]  W. V. Gilbert, “Alternative ways to think about cellular internal ribosome entry,” Journal of Biological Chemistry, vol. 285, no. 38, pp. 29033–29038, 2010.
[51]  W. A. Miller, Z. Wang, and K. Treder, “The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs,” Biochemical Society Transactions, vol. 35, no. 6, pp. 1629–1633, 2007.
[52]  S. D. Kulkarni, B. Muralidharan, A. C. Panda, B. Bakthavachalu, A. Vindu, and V. Seshadri, “Glucose-stimulated translation regulation of insulin by the 5′ UTR-binding proteins,” Journal of Biological Chemistry, vol. 286, no. 16, pp. 14146–14156, 2011.
[53]  D. A. Zelenina, O. I. Kulaeva, E. V. Smirnyagina et al., “Translation enhancing properties of the 5'-leader of potato virus X genomic RNA,” FEBS Letters, vol. 296, no. 3, pp. 267–270, 1992.
[54]  L. Neeleman, R. C. L. Olsthoorn, H. J. M. Linthorst, and J. F. Bol, “Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14286–14291, 2001.
[55]  D. R. Gallie, “The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of elF4F,” Nucleic Acids Research, vol. 30, no. 15, pp. 3401–3411, 2002.
[56]  D. R. Gallie and V. Walbot, “Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation,” Nucleic Acids Research, vol. 20, no. 17, pp. 4631–4638, 1992.
[57]  R. Kawaguchi and J. Bailey-Serres, “mRNA sequence features that contribute to translational regulation in Arabidopsis,” Nucleic Acids Research, vol. 33, no. 3, pp. 955–965, 2005.
[58]  L. K. Mayberry, M. L. Allen, K. R. Nitka, L. Campbell, P. A. Murphy, and K. S. Browning, “Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding,” Journal of Biological Chemistry, vol. 286, no. 49, pp. 42566–42574, 2011.
[59]  D. R. Gallie and K. S. Browning, “eIF4G Functionally Differs from eIFiso4G in Promoting Internal Initiation, Cap-independent Translation, and Translation of Structured mRNAs,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 36951–36960, 2001.
[60]  L. K. Mayberry, M. Leah Allen, M. D. Dennis, and K. S. Browning, “Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs,” Plant Physiology, vol. 150, no. 4, pp. 1844–1854, 2009.
[61]  A. D. Lellis, M. L. Allen, A. W. Aertker et al., “Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability,” Plant Molecular Biology, vol. 74, no. 3, pp. 249–263, 2010.
[62]  T. D. Dinkova, “Tight translational control by the initiation factors eIF4E and eIF(iso)4E is required for maize seed germination,” Seed Science Research, vol. 21, no. 2, pp. 85–93, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133