%0 Journal Article %T Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes? %A Alfonso Mu£żoz %A M. Mar Castellano %J International Journal of Genomics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/406357 %X For years, the study of gene expression regulation of plants in response to stress conditions has been focused mainly on the analysis of transcriptional changes. However, the knowledge on translational regulation is very scarce in these organisms, despite in plants, as in the rest of the eukaryotes, translational regulation has been proven to play a pivotal role in the response to different stresses. Regulation of protein synthesis under abiotic stress was thought to be a conserved process, since, in general, both the translation factors and the translation process are basically similar in eukaryotes. However, this conservation is not so clear in plants as the knowledge of the mechanisms that control translation is very poor. Indeed, some of the basic regulators of translation initiation, well characterised in other systems, are still to be identified in plants. In this paper we will focus on both the regulation of different initiation factors and the mechanisms that cellular mRNAs use to bypass the translational repression established under abiotic stresses. For this purpose, we will review the knowledge from different eukaryotes but paying special attention to the information that has been recently published in plants. 1. Introduction One of the main responses of cells to stress conditions involves partial or virtually total cessation of energetically consumptive processes normally vital to homeostasis, including transcription and protein synthesis. Translation consumes a substantial amount of cellular energy and, therefore, it is one of the main targets to be inhibited in response to most, if not all, types of cellular stresses. However, under conditions where global protein synthesis is severely compromised, some proteins are still synthesised as part of the mechanisms of cell survival, as these proteins are able to mitigate the damage caused by the stress and enable cells to tolerate the stressful conditions more effectively [1]. Appearance of abiotic stresses, as environmental conditions, is in many cases sudden. Therefore, a quick response to stress should be established to assure cell survival. In such a context, translational regulation of preexisting mRNAs provides a prompt and alternative way to control gene expression, as compared to other slower cellular processes such as mRNA transcription, processing, and transport to cytoplasm [2]. In animals and yeast, there are many known examples of global translational inhibition and preferential production of key proteins critical for survival under different abiotic insults [3¨C8]. This scenario %U http://www.hindawi.com/journals/ijg/2012/406357/