Ethoxyquin (EQ, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline) is widely used in animal feed in order to protect it against lipid peroxidation. EQ cannot be used in any food for human consumption (except spices, e.g., chili), but it can pass from feed to farmed fish, poultry, and eggs, so human beings can be exposed to this antioxidant. The manufacturer Monsanto Company (USA) performed a series of tests on ethoxyquin which showed its safety. Nevertheless, some harmful effects in animals and people occupationally exposed to it were observed in 1980’s which resulted in the new studies undertaken to reevaluate its toxicity. Here, we present the characteristics of the compound and results of the research, concerning, for example, products of its metabolism and oxidation or searching for new antioxidants on the EQ backbone. 1. Introduction During storage of animal feed many different processes may occur which alter their initial natural proprieties. First of all, lipids undergo peroxidation, the process during which they are deteriorated in a free radical autocatalytic oxidation chain reaction with atmospheric oxygen. Lipid autooxidation is a cascade phenomenon ensuring continuous delivery of free radicals, which initiate continuous peroxidation. This process results in food rancidity which manifests itself as the change of taste, scent, and color as well as decrease in shelf life of the product. Natural or synthetic antioxidants are usually used to slow down or stop lipid peroxidation and in consequence to preserve freshness of the product. Many natural antioxidants, such as tocopherols, vitamin C, flavonoids, for a short period, may be effective in food preserving, but in many cases such protection is not sufficient. Therefore synthetic antioxidants are widely used, among which BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), and EQ (ethoxyquin) are the most frequent. However, some effects of synthetic antioxidants are not always beneficial for our health. Antioxidants such as BHA or BHT have been widely used for many years to preserve freshness, flavor, and colour of foods and animal feeds as well as to improve the stability of pharmaceuticals and cosmetics. There are many controversies about the use of these two antioxidants in foods. Some experimental studies have reported that both BHT and BHA have tumour-promoting activity [1, 2]. On the other hand, there were reports on anticarcinogenic properties of these antioxidants when they are used at low concentrations [3]. Human exposures are at least 1000-fold below those associated with any
References
[1]
H. Babich, “Butylated hydroxytoluene (BHT): a review,” Environmental Research, vol. 29, no. 1, pp. 1–29, 1982.
[2]
R. Kahl, “Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens,” Toxicology, vol. 33, no. 3-4, pp. 185–228, 1984.
[3]
G. M. Williams, M. J. Iatropoulos, and J. Whysner, “Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 1027–1038, 1999.
[4]
A. A. M. Botterweck, H. Verhagen, R. A. Goldbohm, J. Kleinjans, and P. A. van den Brandt, “Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study,” Food and Chemical Toxicology, vol. 38, no. 7, pp. 599–605, 2000.
[5]
F. M. Brandao, “Contact dermatitis to ethoxyquin,” Contact Dermatitis, vol. 9, no. 3, article 240, 1983.
[6]
C. Savini, R. Morelli, E. Piancastelli, and S. Restani, “Contact dermatitis due to ethoxyquin,” Contact Dermatitis, vol. 21, no. 5, pp. 342–343, 1989.
[7]
D. A. Dzanis, “Safety of ethoxyquin in dog foods,” Journal of Nutrition, vol. 121, no. 11, pp. S163–164, 1991.
[8]
K. Alanko, R. Jolanki, T. Estlander, and L. Kanerva, “Occupational 'multivitamin allergy' caused by the antioxidant ethoxyquin,” Contact Dermatitis, vol. 39, no. 5, pp. 263–264, 1998.
[9]
A. Rodríguez-Trabado, J. Miró I Balagué, and R. Guspi, “Hypersensitivity to the antioxidant ethoxyquin,” Actas Dermo-Sifiliograficas, vol. 98, no. 8, p. 580, 2007.
[10]
A. D. Little, “Ethoxyquin, national toxicology program, executive summary of safety and toxicity information,” Chemical Committee Draft Report, Ethoxyquin CAS Number 91-53-2, 1990, http://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/ethoxyquin_508.pdf.
[11]
U.S Food and Drug Administration, Animal and Veterinary, “FDA requests that ethoxyquin levels be reduced in dog foods,” 1997, http://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm127828.htm.
[12]
A. J. de Koning, “The antioxidant ethoxyquin and its analogues: a review,” International Journal of Food Properties, vol. 5, no. 2, pp. 451–461, 2002.
[13]
I. Drewhurst, “Ethoxyquin. JMPR Evaluations,” 1998, http://www.inchem.org/documents/jmpr/jmpmono/v098pr09.htm.
[14]
P. K. Gupta and A. Boobis, “Ethoxyquin (Addendum),” 2005, http://www.inchem.org/documents/jmpr/jmpmono/v2005pr10.pdf.
[15]
G. Dorey, B. Lockhart, P. Lestage, and P. Casara, “New quinolinic derivatives as centrally active antioxidants,” Bioorganic & Medicinal Chemistry Letters, vol. 10, no. 9, pp. 935–939, 2000.
[16]
A. B?aszczyk, R. Osiecka, and J. Skolimowski, “Induction of chromosome aberrations in cultured human lymphocytes treated with ethoxyquin,” Mutation Research, vol. 542, no. 1-2, pp. 117–128, 2003.
[17]
A. B?aszczyk and J. Skolimowski, “Comparative analysis of cytotoxic, genotoxic and antioxidant effects of 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline and ethoxyquin on human lymphocytes,” Chemico-Biological Interactions, vol. 162, no. 1, pp. 70–80, 2006.
[18]
National Library of Medicine HSDB Database, “Ethoxyquin CASRN: 91-53-2,” 2003, http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@DOCNO+400.
[19]
A. B?aszczyk and J. Skolimowski, “Synthesis and studies on antioxidants: ethoxyquin (eq) and its derivatives,” Acta Poloniae Pharmaceutica—Drug Research, vol. 62, no. 2, pp. 111–115, 2005.
[20]
A. Hobson Frohock, “Residues of ethoxyquin in poultry tissues and eggs,” Journal of the Science of Food and Agriculture, vol. 33, no. 12, pp. 1269–1274, 1982.
[21]
L. T. Burka, J. M. Sanders, and H. B. Matthews, “Comparative metabolism and disposition of ethoxyquin in rat and mouse. II. Metabolism,” Xenobiotica, vol. 26, no. 6, pp. 597–611, 1996.
[22]
P. He and R. G. Ackman, “Residues of ethoxyquin and ethoxyquin dimer in ocean-farmed salmonids determined by high-pressure liquid chromatography,” Journal of Food Science, vol. 65, no. 8, pp. 1312–1314, 2000.
[23]
V. J. B. Bohne, A. K. Lundebye, and K. Hamre, “Accumulation and depuration of the synthetic antioxidant ethoxyquin in the muscle of Atlantic salmon (Salmo salar L.),” Food and Chemical Toxicology, vol. 46, no. 5, pp. 1834–1843, 2008.
[24]
A. K. Lundebye, H. Hove, A. M?ge, V. J. B. Bohne, and K. Hamre, “Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytoluene and butylated hydroxyanisole) in fish feed and commercially farmed fish,” Food Additives and Contaminants A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 27, no. 12, pp. 1652–1657, 2010.
[25]
JMPR, “Pesticide residues in food—2005. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues,” JMPR Report, Ethoxyquin 035, 2005, http://www.fao.org/ag/AGP/AGPP/Pesticid/JMPR/Download/99_eva/14Ethoxyquin.pdf.
[26]
V. J. Berdikova Bohne, H. Hove, and K. Hamre, “Simultaneous quantitative determination of the synthetic antioxidant ethoxyquin and its major metabolite in atlantic salmon (Salmo salar, L), ethoxyquin dimer, by reversed-phase high-performance liquid chromatography with fluorescence detection,” Journal of AOAC International, vol. 90, no. 2, pp. 587–597, 2007.
[27]
J. U. Skaare and S. O. Roald, “Ethoxyquin (EMQ) residues in Atlantic salmon measured by fluorimetry and gas chromatography (GLC),” Nordisk Veterinaermedicin, vol. 29, no. 4-5, pp. 232–236, 1977.
[28]
V. J. B. Bohne, K. Hamre, and A. Arukwe, “Hepatic biotransformation and metabolite profile during a 2-week depuration period in Atlantic Salmon fed graded levels of the synthetic antioxidant, ethoxyquin,” Toxicological Sciences, vol. 93, no. 1, pp. 11–21, 2006.
[29]
V. J. B. Bohne, K. Hamre, and A. Arukwe, “Hepatic metabolism, phase I and II biotransformation enzymes in Atlantic salmon (Salmo Salar, L) during a 12 week feeding period with graded levels of the synthetic antioxidant, ethoxyquin,” Food and Chemical Toxicology, vol. 45, no. 5, pp. 733–746, 2007.
[30]
T. D. Bucheli and K. Fent, “Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems,” Critical Reviews in Environmental Science and Technology, vol. 25, no. 3, pp. 201–268, 1995.
[31]
A. Arukwe, L. F?rlin, and A. Goks?yr, “Xenobiotic and steroid biotransformation enzymes in Atlantic salmon (Salmo salar) liver treated with an estrogenic compound, 4-nonylphenol,” Environmental Toxicology and Chemistry, vol. 16, no. 12, pp. 2576–2583, 1997.
[32]
T. M. Buetler, E. P. Gallagher, C. Wang, D. L. Stahl, J. D. Hayes, and D. L. Eaton, “Induction of phase I and phase II drug-detabolizing enzyme mRNA, protein, and activity by BHA, ethoxyquin, and oltipraz,” Toxicology and Applied Pharmacology, vol. 135, no. 1, pp. 45–57, 1995.
[33]
J. D. Hayes, D. J. Pulford, E. M. Ellis et al., “Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: mechanisms of inducible resistance to aflatoxin B1,” Chemico-Biological Interactions, vol. 111-112, pp. 51–67, 1998.
[34]
K. L. Henson, G. Stauffer, and E. P. Gallagher, “Induction of glutathione S-transferase activity and protein expression in brown bullhead(Ameiurus nebulosus) liver by ethoxyquin,” Toxicological Sciences, vol. 62, no. 1, pp. 54–60, 2001.
[35]
T. K. Bammler, D. H. Slone, and D. L. Eaton, “Effects of dietary oltipraz and ethoxyquin on aflatoxin B1 biotransformation in non-human primates,” Toxicological Sciences, vol. 54, no. 1, pp. 30–41, 2000.
[36]
R. Kahl, “Elevation of hepatic epoxide hydratase activity by ethoxyquin is due to increased synthesis of the enzyme,” Biochemical and Biophysical Research Communications, vol. 95, no. 1, pp. 163–169, 1980.
[37]
R. ?rnsrud, A. Arukwe, V. Bohne, N. Pavlikova, and A. K. Lundebye, “Investigations on the metabolism and potentially adverse effects of ethoxyquin dimer, a major metabolite of the synthetic antioxidant ethoxyquin in salmon muscle,” Journal of Food Protection, vol. 74, pp. 1574–1580, 2011.
[38]
L. Taimr, M. Prusikova, and J. Pospisil, “Antioxidants and stabilizers. 113. Oxidation-products of the antidegradant ethoxyquin,” Angewandte Makromolekulare Chemie, vol. 190, pp. 53–65, 1991.
[39]
L. Taimr, “Study of the mechanism of the antioxidant action of ethoxyquin,” Angewandte Makromolekulare Chemie, vol. 217, pp. 119–128, 1994.
[40]
C. Lauridsen, K. Jakobsen, and T. K. Hansen, “The influence of dietary ethoxyquin on the vitamin E status in broilers,” Archiv fur Tierernahrung, vol. 47, no. 3, pp. 245–254, 1995.
[41]
D. R. Brannegan, Analysis of ethoxyquin and its oxidation products using supercritical fluid extraction and high performance liquid chromatography with chemiluminescent nitrogen detection [thesis], Faculty of the Virginia Polytechnic, Institute and State University in Partial Fulfillment of the Requirements of the Degree of Master of Science in Chemistry, 2000, http://scholar.lib.vt.edu/theses/available/etd-03302000-20440044/.
[42]
L. Taimr, M. Smelhausova, and M. Prusikova, “The reaction of 1-cyano-1-methylethyl radical with antidegradant ethoxyquin and its aminyl and nitroxide derivatives,” Angewandte Makromolekulare Chemie, vol. 206, pp. 199–207, 1993.
[43]
A. J. de Koning and G. van der Merwe, “Determination of ethoxyquin and two of its oxidation products in fish meal by gas chromatography,” The Analyst, vol. 117, no. 10, pp. 1571–1576, 1992.
[44]
P. He and R. G. Ackman, “HPLC determination of ethoxyquin and its major oxidation products in fresh and stored fish meals and fish feeds,” Journal of the Science of Food and Agriculture, vol. 80, pp. 10–16, 2000.
[45]
S. Thorisson, F. Gunstone, and R. Hardy, “The antioxidant properties of ethoxyquin and of some of its oxidation products in fish oil and meal,” Journal of the American Oil Chemists' Society, vol. 69, pp. 806–809, 1992.
[46]
P. He and R. G. Ackman, “Purification of ethoxyquin and its two oxidation products,” Journal of Agricultural and Food Chemistry, vol. 48, no. 8, pp. 3069–3071, 2000.
[47]
H. W. Renner, “Antimutagenic effect of an antioxidant in mammals,” Mutation Research, vol. 135, no. 2, pp. 125–129, 1984.
[48]
H. W. Renner and M. Knoll, “Antimutagenic effects on male germ cells of mice,” Mutation Research, vol. 140, no. 2-3, pp. 127–129, 1984.
[49]
D. Guyonnet, C. Belloir, M. Suschetet, M. H. Siess, and A. M. Le Bon, “Antimutagenic activity of organosulfur compounds from Allium is associated with phase II enzyme induction,” Mutation Research, vol. 495, no. 1-2, pp. 135–145, 2001.
[50]
A. Stankiewicz, E. Skrzydlewska, and M. Makie?a, “Effects of amifostine on liver oxidative stress caused by cyclophosphamide administration to rats,” Drug Metabolism and Drug Interactions, vol. 19, no. 2, pp. 67–82, 2002.
[51]
S. Ray, B. Pandit, S. D. Ray, S. Das, and S. Chakraborty, “Cyclophosphamide induced lipid peroxidation and changes in cholesterol content: protective role of reduced glutathione,” International Journal of PharmTech Research, vol. 2, no. 1, pp. 704–718, 2010.
[52]
J. R. P. Cabral and G. E. Neal, “The inhibitory effects of ethoxyquin on the carcinogenic action of aflatoxin B1 in rats,” Cancer Letters, vol. 19, no. 2, pp. 125–132, 1983.
[53]
M. M. Manson, J. A. Green, and H. E. Driver, “Ethoxyquin alone induces preneoplastic changes in rat kidney whilst preventing induction of such lesions in liver by aflatoxin B1,” Carcinogenesis, vol. 8, no. 5, pp. 723–728, 1987.
[54]
E. A. Decker, “Phenolics: prooxidants or antioxidants?” Nutrition Reviews, vol. 55, no. 11, pp. 396–398, 1997.
[55]
Y. Sakihama, M. F. Cohen, S. C. Grace, and H. Yamasaki, “Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants,” Toxicology, vol. 177, no. 1, pp. 67–80, 2002.
[56]
J. U. Skaare and T. Henriksen, “Free-radical formation in antioxidant ethoxyquin,” Journal of the Science of Food and Agriculture, vol. 26, pp. 1647–1654, 1975.
[57]
C. S. Wilcox and A. Pearlman, “Chemistry and antihypertensive effects of tempol and other nitroxides,” Pharmacological Reviews, vol. 60, no. 4, pp. 418–469, 2008.
[58]
G. H. McIntosh, J. S. Charnock, P. H. Phillips, and G. J. Baxter, “Acute intoxication of marmosets and rats fed high concentrations of the dietary antioxidant "ethoxyquin 66",” Australian Veterinary Journal, vol. 63, no. 11, pp. 385–386, 1986.
[59]
N. Ito, S. Fukushima, and H. Tsuda, “Carcinogenicity and modification of the carcinogenic response by BHA, BHT and other antioxidants,” Critical Reviews in Toxicology, vol. 15, no. 2, pp. 109–150, 1985.
[60]
Y. Yamashita, T. Katagiri, N. Pirarat, K. Futami, M. Endo, and M. Maita, “The synthetic antioxidant, ethoxyquin, adversely affects immunity in tilapia (Oreochromis niloticus),” Aquaculture Nutrition, vol. 15, no. 2, pp. 144–151, 2009.
[61]
G. E. Neal, D. J. Judah, G. G. Hard, and N. Ito, “Differences in ethoxyquin nephrotoxicity between male and female F344 rats,” Food and Chemical Toxicology, vol. 41, no. 2, pp. 193–200, 2003.
[62]
V. Y. Leong and T. P. Brown, “Toxicosis in broiler chicks due to excess dietary ethoxyquin,” Avian Diseases, vol. 36, no. 4, pp. 1102–1106, 1992.
[63]
J. Wang, Q. Ai, K. Mai et al., “Effects of dietary ethoxyquin on growth performance and body composition of large yellow croaker Pseudosciaena crocea,” Aquaculture, vol. 306, no. 1–4, pp. 80–84, 2010.
[64]
M. E. Hernandez, J. L. Reyes, C. Gomez-Lojero, M. S. Sayavedra, and E. Melendez, “Inhibition of the renal uptake of p-aminohippurate and tetraethylammonium by the antioxidant ethoxyquin in the rat,” Food and Chemical Toxicology, vol. 31, no. 5, pp. 363–367, 1993.
[65]
J. L. Reyes, M. Elisabeth Hernández, E. Meléndez, and C. Gómez-Lojero, “Inhibitory effect of the antioxidant ethoxyquin on electron transport in the mitochondrial respiratory chain,” Biochemical Pharmacology, vol. 49, no. 3, pp. 283–289, 1995.
[66]
P. E. Joner, “Butylhydroxyanisol (BHA), butylhydroxytoluene (BHT) and ethoxyquin (EMQ) tested for mutagenicity,” Acta Veterinaria Scandinavica, vol. 18, no. 2, pp. 187–193, 1977.
[67]
T. Ohta, M. Moriya, Y. Kaneda, et al., “Mutagenicity screening of feed additives in the microbial system,” Mutation Research, vol. 77, no. 1, pp. 21–30, 1980.
[68]
E. Zeiger, “Mutagenicity of chemicals added to foods,” Mutation Research, vol. 290, no. 1, pp. 53–61, 1993.
[69]
A. Rannug, U. Rannug, and C. Ramel, “Genotoxic effects of additives in synthetic elastomers with special consideration to the mechanism of action of thiurams and dithiocarbamates,” Progress in Clinical and Biological Research, vol. 141, pp. 407–419, 1984.
[70]
B. S. Reddy, D. Hanson, L. Mathews, and C. Sharma, “Effect of micronutrients, antioxidants and related compounds on the mutagenicity of 3,2'-dimethyl-4-aminobiphenyl, a colon and breast carcinogen,” Food and Chemical Toxicology, vol. 21, no. 2, pp. 129–132, 1983.
[71]
A. B?aszczyk and J. Skolimowski, “Apoptosis and cytotoxicity caused by ethoxyquin and two of its salts,” Cellular and Molecular Biology Letters, vol. 10, no. 1, pp. 15–21, 2005.
[72]
A. B?aszczyk, “DNA damage induced by ethoxyquin in human peripheral lymphocytes,” Toxicology Letters, vol. 163, no. 1, pp. 77–83, 2006.
[73]
J. J. Skolimowski, B. Cie?lińska, M. Zak, R. Osiecka, and A. B?aszczyk, “Modulation of ethoxyquin genotoxicity by free radical scavengers and DNA damage repair in human lymphocytes,” Toxicology Letters, vol. 193, no. 2, pp. 194–199, 2010.
[74]
J. J. P. Gille, P. Pasman, C. G. M. van Berkel, and H. Joenje, “Effect of antioxidants on hyperoxia-induced chromosomal breakage in Chinese hamster ovary cells: protection by carnosine,” Mutagenesis, vol. 6, no. 4, pp. 313–318, 1991.
[75]
T. H. Rabbitts, “Chromosomal translocations in human cancer,” Nature, vol. 372, no. 6502, pp. 143–149, 1994.
[76]
A. J. de Koning, “An antioxidant for fish meal,” Republic of South Africa Patent, 970894, 1997.
[77]
National Toxicology Program (NTP), Toxicology and Carcinogenesis Studies of 1,2-Dihydro-2,2,4-Trimethylquinoline (CAS no. 147-47-7) in F344/N Rats and B6C3DF1mice (Dermal Studies) and the Initiation/Promotion (Dermal Study) in Female Sencar Mice, Technical Report Series no. 456, U.S. Department of Health and Human Services, 1997, http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr456.pdf.
[78]
K. Sitarek and A. Sapota, “Maternal-fetal distribution and prenatal toxicity of 2,2,4-trimethyl-1,2-dihydroquinoline in the rat,” Birth Defects Research Part B—Developmental and Reproductive Toxicology, vol. 68, no. 4, pp. 375–382, 2003.
[79]
A. B?aszczyk, J. Skolimowski, and A. Materac, “Genotoxic and antioxidant activities of ethoxyquin salts evaluated by the comet assay,” Chemico-Biological Interactions, vol. 162, no. 3, pp. 268–273, 2006.
[80]
A. B?aszczyk and J. Skolimowski, “Apoptosis and cytotoxicity caused by ethoxyquin salts in human lymphocytes in vitro,” Food Chemistry, vol. 105, no. 3, pp. 1159–1163, 2007.
[81]
A. B?aszczyk and J. Skolimowski, “Evaluation of the genotoxic and antioxidant effects of two novel feed additives (ethoxyquin complexes with flavonoids) by the comet assay and micronucleus test,” Food Additives and Contaminants, vol. 24, no. 6, pp. 553–560, 2007.
[82]
A. B?aszczyk and J. Skolimowski, “Preparation of ethoxyquin salts and their genotoxic and antioxidant effects on human lymphocytes,” Arkivoc, vol. 2007, no. 6, pp. 217–229, 2007.
[83]
A. Augustyniak, A. Niezgoda, J. Skolimowski, R. Kontek, and A. B?aszczyk, “Cytotoxicity and genotoxicity of ethoxyquin dimers,” Bromatologia i Chemia Toksykologiczna, vol. 45, pp. 228–234, 2012.
[84]
Y. Aoki, A. Kotani, N. Miyazawa et al., “Determination of ethoxyquin by high-performance liquid chromatography with fluorescence detection and its application to the survey of residues in food products of animal origin,” Journal of AOAC International, vol. 93, no. 1, pp. 277–283, 2010.