This paper deals with the evaluation of parameterization schemes in the WRF model for estimation of mixing height. Numerical experiments were performed using various combinations of parameterization schemes and the results were compared with the mixing height estimated using the radiosonde observations taken by the India Meteorological Department (IMD) at Mangalore site for selected days of the warm and cold season in the years 2004–2007. The results indicate that there is a large variation in the mixing heights estimated by the model using various combinations of parameterization schemes. It was seen that the physics option consisting of Mellor Yamada Janjic (Eta) as the PBL scheme, Monin Obukhov Janjic (Eta) as the surface layer scheme, and Noah land surface model performs reasonably well in reproducing the observed mixing height at this site for both the seasons as compared to the other combinations tested. This study also showed that the choice of the land surface model can have a significant impact on the simulation of mixing height by a prognostic model. 1. Introduction Prognostic atmospheric models are used as meteorological drivers to air pollution models in the absence of representative measured meteorological data for a site. These models generally provide wind speed, wind direction, temperature, humidity, rainfall, and mixing height values to the air pollution models. Many times, the resolution at which these models are integrated is too coarse to resolve the exchanges of heat, momentum, and moisture taking place at the air soil interface and hence these exchanges have to be parameterized in atmospheric models. Parameterization schemes may also be included in an atmospheric model for the representation of atmospheric phenomena whose explicit treatment may become too prohibitive due to cost and computer limitations. A weather model includes parameterizations for radiation, surface layer fluxes, turbulence, cumulus convection, and clouds. Generally there are six to seven schemes available for representation of each of these processes with its own merits and demerits depending upon the terrain, geography, and climate of the area under consideration. Mixing height is an important input to air pollution models since the transport and extent of mixing of pollutants depend on it. The mixing in the atmosphere primarily takes place through convective and mechanical processes. During the daytime, differential heating due to solar radiation sets up strong thermals in the atmosphere and the convective processes dominate whereas, during the nighttime,
References
[1]
H. H. Shin and S. Y. Hong, “Intercomparison of planetary boundary-layer parameterizations in the WRF model for a single day from CASES-99,” Boundary-Layer Meteorology, vol. 139, no. 2, pp. 261–281, 2011.
[2]
Z. Han, H. Ueda, and J. An, “Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models,” Atmospheric Environment, vol. 42, no. 2, pp. 233–249, 2008.
[3]
X. M. Hu, J. W. Nielsen-Gammon, and F. Zhang, “Evaluation of three planetary boundary layer schemes in the WRF model,” Journal of Applied Meteorology and Climatology, vol. 49, no. 9, pp. 1831–1844, 2010.
[4]
W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A description of the advanced research WRF version 3,” NCAR Technical Note, NCAR, Boulder, Colo, USA, 2008.
[5]
W. Wei, B. Cindy, D. Michael et al., ARW Version 3 Modeling System User's Guide, 2009.
[6]
S. Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Monthly Weather Review, vol. 134, no. 9, pp. 2318–2341, 2006.
[7]
Z. I. Janjic, “The step-mountain coordinate: physical package,” Monthly Weather Review, vol. 118, no. 7, pp. 1429–1443, 1990.
[8]
Z. I. Janjic, “Nonsingular implementation of the Mellor Yamada level 2.5 Scheme in the NCEP Meso model,” NCEP Office Note 437, 2002.
[9]
J. E. Pleim, “A combined local and non-local closure model for the atmospheric boundary layer. Part I: model description and testing,” Journal of Applied Meteorology and Climatology, vol. 46, no. 9, pp. 1383–1395, 2007.
[10]
S. Sukoriansky, B. Galperin, and V. Perov, “Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice,” Boundary-Layer Meteorology, vol. 117, no. 2, pp. 231–257, 2005.
[11]
S. Sukoriansky, B. Galperin, and V. Perov, “A quasi-normal scale elimination model of turbulence and its application to stably stratified flows,” Nonlinear Processes in Geophysics, vol. 13, no. 1, pp. 9–22, 2006.
[12]
A. S. Monin and A. M. Obukhov, “Basic laws of turbulent mixing in the surface layer of the atmosphere,” Contributions of the Geophysical Institute of the Slovak Academy of Sciences, vol. 24, no. 151, pp. 163–187, 1954.
[13]
Z. I. Janjic, “The surface layer in the NCEP Eta Model,” in Proceedings of the 11th Conference on Numerical Weather Prediction, pp. 354–355, American Meteorological Society, Norfolk, Va, USA, August 1996.
[14]
J. Dudhia, “A multi layer soil temperature model for MM5,” in Proceedings of the 6th PSU/NCAR Mesoscale Model Users' Workshop, pp. 49–50, Boulder, Colo, USA, July 1996.
[15]
F. Chen and J. Dudhia, “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity,” Monthly Weather Review, vol. 129, no. 4, pp. 569–585, 2001.
[16]
E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16663–16682, 1997.
[17]
J. Dudhia, “Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model,” Journal of the Atmospheric Sciences, vol. 46, no. 20, pp. 3077–3107, 1989.
[18]
J. S. Kain and J. M. Fritsch, “A one-dimensional entraining/detraining plume model and its application in convective parameterization,” Journal of the Atmospheric Sciences, vol. 47, no. 23, pp. 2784–2802, 1990.
[19]
J. S. Kain, “The Kain Fritsch convective parameterization: an update,” Journal of Applied Meteorology, vol. 43, no. 1, pp. 170–181, 2004.
[20]
B. S. Ferrier, Y. Lin, T. Black, E. Rogers, and G. DiMego, “Implementation of a new grid scale cloud and precipitation scheme in the NCEP Eta model,” in Proceedings of the 15th Conference on Numerical Weather Prediction, pp. 280–283, American Meteorological Society, San Antonio, Tex, USA, 2002.
[21]
G. C. Holtzworth, “Mixing depths, wind speeds and air pollution potential for selected locations in the United States,” Journal of Applied Meteorology, vol. 6, no. 6, pp. 1039–1044, 1967.
[22]
J. Stensrud David, Parameterization Schemes Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, 2007.