%0 Journal Article %T Evaluation of Parameterization Schemes in the WRF Model for Estimation of Mixing Height %A R. Shrivastava %A S. K. Dash %A R. B. Oza %A D. N. Sharma %J International Journal of Atmospheric Sciences %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/451578 %X This paper deals with the evaluation of parameterization schemes in the WRF model for estimation of mixing height. Numerical experiments were performed using various combinations of parameterization schemes and the results were compared with the mixing height estimated using the radiosonde observations taken by the India Meteorological Department (IMD) at Mangalore site for selected days of the warm and cold season in the years 2004¨C2007. The results indicate that there is a large variation in the mixing heights estimated by the model using various combinations of parameterization schemes. It was seen that the physics option consisting of Mellor Yamada Janjic (Eta) as the PBL scheme, Monin Obukhov Janjic (Eta) as the surface layer scheme, and Noah land surface model performs reasonably well in reproducing the observed mixing height at this site for both the seasons as compared to the other combinations tested. This study also showed that the choice of the land surface model can have a significant impact on the simulation of mixing height by a prognostic model. 1. Introduction Prognostic atmospheric models are used as meteorological drivers to air pollution models in the absence of representative measured meteorological data for a site. These models generally provide wind speed, wind direction, temperature, humidity, rainfall, and mixing height values to the air pollution models. Many times, the resolution at which these models are integrated is too coarse to resolve the exchanges of heat, momentum, and moisture taking place at the air soil interface and hence these exchanges have to be parameterized in atmospheric models. Parameterization schemes may also be included in an atmospheric model for the representation of atmospheric phenomena whose explicit treatment may become too prohibitive due to cost and computer limitations. A weather model includes parameterizations for radiation, surface layer fluxes, turbulence, cumulus convection, and clouds. Generally there are six to seven schemes available for representation of each of these processes with its own merits and demerits depending upon the terrain, geography, and climate of the area under consideration. Mixing height is an important input to air pollution models since the transport and extent of mixing of pollutants depend on it. The mixing in the atmosphere primarily takes place through convective and mechanical processes. During the daytime, differential heating due to solar radiation sets up strong thermals in the atmosphere and the convective processes dominate whereas, during the nighttime, %U http://www.hindawi.com/journals/ijas/2014/451578/