全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Sorption of Ni(II) by Grape Shell Ash from Aqueous Solution: Kinetic and Thermodynamic Studies

DOI: 10.1155/2013/248138

Full-Text   Cite this paper   Add to My Lib

Abstract:

The sorption of Ni(II) onto grape shell ash (GSA) was studied by performing batch kinetic sorption experiments. The influences of major parameters in Nickel(II) ions sorption on GS such as initial of pH, initial concentration of Ni(II) ions, the initial temperatures of solution, and contact time were investigated. The maximum increase in the rate of sorption of Ni(II) ions on GS was observed at an initial pH = 5, initial concentration of nickel 50?mgL?1, temperature of solution (328?K), and ?min. The rate constants and the equilibrium sorption capacities were calculated. The results indicate that the sorption process follows the second-order kinetics and the values of rate constants were found to be 0.224, 0.402, 0.193 and 0.123?min?1 at 298, 308, 318, and 328?K, respectively. The values of correlation coefficients for the adsorption of Ni(II) on GSA from all the systems were found to be 0.999, and the values of predicted equilibrium sorption capacities showed good agreement with the experimental equilibrium uptake values. The thermodynamic parameters ( , , and ) of the adsorption process were calculated, and these parameters showed that the adsorption process is spontaneous. 1. Introduction The presence of heavy metals in the environment is of major concern because of their toxic nature and tendency for bioaccumulation in the food chain even in relatively low concentrations [1–5]. The discharge of water containing heavy metals causes critical pollution problems. Nickel (II) ion is one such heavy metal frequently encountered in wastewater streams from industries such as electroplating, battery manufacture, mineral processing, steam-electric power plants, paint formulation, and porcelain enameling [6–8]. In drinking water and for industrial wastewater, the tolerance limit of nickel is 0.01?mg?L?1 and 2.0?mg?L?1. Cancer of nose, bone, and lungs is created. Dermatitis (nickel itch) is the most frequent effect of exposure to nickel, such as coins and costume jewelry. Nickel carbonyl [Ni(CO)4] has been estimated as lethal in humans at atmospheric exposures of 30?mg?L?1 for 30?min [3]. Acute Ni(II) poisoning causes dizziness, headache, nausea and vomiting, chest pain, dry cough and shortness of breath, rapid respiration, cyanosis, and extreme weakness [9–12]. These harmful effects of Ni(II) necessitate its removal from wastewaters before the release into streams. Several treatment methods such as membrane filtration, chemical precipitation, chemical oxidation/reduction, ion exchange, filtration, electrochemical treatment, solvent extraction, co-precipitation,

References

[1]  A. Bhatnagar and A. K. Minocha, “Biosorption optimization of nickel removal from water using Punica granatum peel waste,” Colloids and Surfaces B, vol. 76, no. 2, pp. 544–548, 2010.
[2]  V. K. Gupta, R. Mangla, and S. Agarwal, “Pb(II) selective potentiometric sensor based on 4-tertbutylcalix[4]arene in PVC matrix,” Electroanalysis, vol. 14, pp. 1127–1132, 2002.
[3]  V. K. Gupta, P. J. M. Carrott, M. M. L. Ribeiro Carrott, and S. Suhas, “Low-cost adsorbents: growing approach to wastewater treatment—a review,” Critical Reviews in Environmental Science and Technology, vol. 39, no. 10, pp. 783–842, 2009.
[4]  V. K. Gupta, R. N. Goyal, and R. A. Sharma, “Novel PVC membrane based alizarin sensor and its application; determination of vanadium, zirconium and molybdenum,” International Journal of Electrochemical Science, vol. 4, no. 1, pp. 156–172, 2009.
[5]  A. K. Jain, V. K. Gupta, B. B. Sahoo, and L. P. Singh, “Copper(II)-selective electrodes based on macrocyclic compounds,” Analytical Proceedings including Analytical Communications, vol. 32, no. 3, pp. 99–101, 1995.
[6]  V. K. Gupta, I. Ali, and V. K. Saini, “Defluoridation of wastewaters using waste carbon slurry,” Water Research, vol. 41, no. 15, pp. 3307–3316, 2007.
[7]  D. Nabarlatz, J. de Celis, P. Bonelli, and A. L. Cukierman, “Batch and dynamic sorption of Ni(II) ions by activated carbon based on a native lignocellulosic precursor,” Journal of Environmental Management, vol. 97, no. 1, pp. 109–115, 2012.
[8]  S. J. Kleinübing, E. Guibal, E. A. da Silva, and M. G. C. da Silva, “Copper and nickel competitive biosorption simulation from single and binary systems by Sargassum filipendula,” Chemical Engineering Journal, vol. 184, pp. 16–22, 2012.
[9]  A. Ewecharoen, P. Thiravetyan, and W. Nakbanpote, “Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith,” Chemical Engineering Journal, vol. 137, no. 2, pp. 181–188, 2008.
[10]  V. K. Gupta, A. Rastogi, and A. Nayak, “Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material,” Journal of Colloid and Interface Science, vol. 342, no. 1, pp. 135–141, 2010.
[11]  V. K. Gupta, A. Rastogi, and A. Nayak, “Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models,” Journal of Colloid and Interface Science, vol. 342, no. 2, pp. 533–539, 2010.
[12]  S. Yadav, V. Srivastava, S. Banerjee, F. Gode, and Y. C. Sharma, “Studies on the removal of nickel from aqueous solutions using modified riverbed sand,” Environmental Science and Pollution Research, vol. 20, no. 1, pp. 558–567, 2013.
[13]  N. H. Shaidan, U. Eldemerdash, and S. Awad, “Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique,” Journal of the Taiwan Institute of Chemical Engineers, vol. 43, no. 1, pp. 40–45, 2012.
[14]  N. A. Khan, Z. Hasan, and S. H. Jhung, “Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review,” Journal of Hazardous Materials, vol. 244-245, pp. 444–456, 2013.
[15]  K. K. Krishnani, X. Meng, and V. M. Boddu, “Fixation of heavy metals onto lignocellulosic sorbent prepared from paddy straw,” Water Environment Research, vol. 80, no. 11, pp. 2165–2174, 2008.
[16]  K. K. Krishnani, X. Meng, C. Christodoulatos, and V. M. Boddu, “Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk,” Journal of Hazardous Materials, vol. 153, no. 3, pp. 1222–1234, 2008.
[17]  K. Anoop Krishnan, K. G. Sreejalekshmi, and R. S. Baiju, “Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith,” Bioresource Technology, vol. 102, no. 22, pp. 10239–10247, 2011.
[18]  L. Huang, Y. Sun, T. Yang, and L. Li, “Adsorption behavior of Ni (II) on lotus stalks derived active carbon by phosphoric acid activation,” Desalination, vol. 268, no. 1–3, pp. 12–19, 2011.
[19]  S. K. Lagergren, “Zur theorie der sogenannten adsorption gel?ster stoffe,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1898.
[20]  Y. S. Ho and G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Research, vol. 34, no. 3, pp. 735–742, 2000.
[21]  P. Fatehi, J. Ryan, and Y. Ni, “Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon,” Bioresource Technology, vol. 131, pp. 308–314, 2013.
[22]  G. McKay, Y. S. Ho, and J. C. Y. Ng, “Biosorption of copper from waste waters: a review,” Separation and Purification Methods, vol. 28, no. 1, pp. 87–125, 1999.
[23]  Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, vol. 70, no. 2, pp. 115–124, 1998.
[24]  Z. Reddad, C. Gerente, Y. Andres, and P. le Cloirec, “Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies,” Environmental Science and Technology, vol. 36, no. 9, pp. 2067–2073, 2002.
[25]  B. Tao and A. J. Fletcher, “Metaldehyde removal from aqueous solution by adsorption and ion exchange mechanisms onto activated carbon and polymeric sorbents,” Journal of Hazardous Materials, vol. 244-245, pp. 240–250, 2013.
[26]  S. Shrestha, G. Son, and S. H. Lee, “Kinetic parameters and mechanism of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber,” Journal of Hazardous, Toxic, and Radioactive Waste, 2013.
[27]  Ch. Kannan, K. Muthuraja, and M. R. Devi, “Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption,” Journal of Hazardous Materials, vol. 244-245, pp. 10–20, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133