全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Economic Impacts of Using Switchgrass as a Feedstock for Ethanol Production: A Case Study Located in East Tennessee

DOI: 10.1155/2013/138485

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the major motivations to establish a biobased energy sector in the United States is to promote economic development in the rural areas of the nation. This study estimated the economic impact of investing and operating a switchgrass-based ethanol plant in East Tennessee. Applying a spatially oriented mixed-integer mathematical programming model, we first determined the location of biorefinery, feedstock draw area, and the resources used in various feedstock supply systems by minimizing the total plant gate cost of feedstock. Based on the model output, an input-output model was utilized to determine the total economic impact, including direct, indirect, and induced effects of feedstock investment and annual production in the study region. Moreover, the economic impact of ethanol plant investment and annual conversion operation was analyzed. Results suggest that the total annual expenditures in an unprotected large round bale system generated a total $92.5 million in economic output within the 13 counties of East Tennessee. In addition, an estimated $234 million in overall economic output was generated through the operation of the biorefinery. This research showed that the least-cost configuration of the feedstock supply chain influenced the levels and types of economic impact of biorefinery. 1. Introduction The Energy Independence and Security Act of 2007 mandates 136 billion liters of biofuels to be produced annually by the year 2022 with 61 billion liters coming from cellulosic sources [1]. A major source of feedstock required to meet the mandate is lignocellulosic biomass (LCB). As indicated in two recent studies, the United States is capable of producing over a billion tons of LCB annually [2, 3]. Produced from dedicated energy crops, crop and forest residues, and municipal solid waste streams, LCB can play a significant role in the production of biobased fuels, power, and products in the United States. The Roadmap for Bioenergy and Biobased Products in the United States [4] indicates that the development of a biobased industrial sector using LCB feedstock in the United States can reduce dependence on imported petroleum, add to the diversity of energy sources, enhance energy security, improve the balance of trade, reduce carbon emissions, increase carbon sequestration, and stimulate economic growth in rural areas. This research evaluates the potential economic impacts of locating a switchgrass-to-ethanol biorefinery in rural East Tennessee, USA. Switchgrass is a strong candidate as a dedicated energy crop for biofuel production because it is a

References

[1]  U.S. Congress, “Energy Independence and Security Act of 2007,” Public Law No: 110–140. December 19, 2007.
[2]  U.S. Department of Energy, “U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry,” R. D. Perlack and B. J. Stokes (Leads), ORNL/TM-2011/224, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA, 227p, 2011.
[3]  B. C. English, D. De La Torre Ugarte, K. Jensen, et al., 25% Renewable Energy For the United States By 2025: Agricultural and Economic Impacts, The University of Tennessee, Institute of Agriculture, Department of Agricultural and Resource Economics, 2006.
[4]  Biomass Research and Development Technical Advisory Committee, Roadmap for Bioenergy and Biobased Products in the United States, Department of Agriculture, Washington, DC, USA, 2007, http://www1.eere.energy.gov/biomass/pdfs/obp_roadmapv2_web.pdf.
[5]  L. Wright, Historical Perspective on How and Why Switchgrass was Selected as a “Model” High-Potential Energy Crop, ORNL/TM-2007/109, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA, 2007.
[6]  L. Rinehart, Switchgrass as a Bioenergy Crop, National Center for Appropriate Technology, 2006, https://attra.ncat.org/publication.html.
[7]  S. B. McLaughlin, J. Bouton, D. Bransby, et al., “Developing switchgrass as a bioenergy crop,” in Perspectives on New Crops and New Uses, J. Janick, Ed., ASHS Press, Alexandria, VA, USA, 1999.
[8]  S. B. McLaughlin and L. A. Kszos, “Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States,” Biomass and Bioenergy, vol. 28, no. 6, pp. 515–535, 2005.
[9]  J. A. Larson, T. Yu, B. C. English, D. F. Mooney, and C. Wang, “Cost evaluation of alternative switchgrass producing, harvesting, storing, and transporting systems and their logistics in the southeastern US,” Agricultural Finance Review, vol. 70, no. 2, pp. 184–200, 2010.
[10]  L. Brass, East Tennessee Farmers’ First Switchgrass; Harvest Ready to Turn Into Biofuel, Checkbiotech, 2011, http://bioenergy.checkbiotech.org/news/east_tenn_farmers_first_switchgrass_harvest_ready_turn_biofuel.
[11]  D. F. Mooney, J. A. Larson, B. C. English, and D. D. Tyler, “Effects of dry matter loss on profitability of outdoor storage of switchgrass,” Biomass and Bioenergy, vol. 44, pp. 33–41, 2012.
[12]  W. F. Lazarus, D. G. Tiffany, R. S. Zalesny, and D. E. Riemenschneider, “Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study,” Journal of Forestry, vol. 109, no. 3, pp. 149–156, 2011.
[13]  P. J. Thomassin and L. Baker, “Macroeconomic impact of establishing a large-scale fuel ethanol plant on the Canadian economy,” Canadian Journal of Agricultural Economics, vol. 48, no. 1, pp. 67–85, 2000.
[14]  J. Miranowski, D. Swenson, L. Eathington, and A. Rosburg, “Biofuel, the rural economy, and farm structure,” in Risk, Infrastructure and Industry Evolution, B. C. English, R. J. Menard, and K. Jensen, Eds., Farm Foundation Press, Washington, DC, USA, 2008.
[15]  K. Mukhopadhyay and P. J. Thomassin, “Macroeconomic effects of the Ethanol Biofuel Sector in Canada,” Biomass and Bioenergy, vol. 35, no. 7, pp. 2822–2838, 2011.
[16]  S. J. Vogel, K. Hanson, J. M. Price, and G. Schluter, “Putting bounds on estimating economywide impacts from adopting the renewable fuels standard,” AgBioForum, vol. 5, no. 3, pp. 101–104, 2002.
[17]  D. De La Torre Ugarte, B. English, K. Jensen, C. Hellwinckel, J. Menard, and B. Wilson, Economic and Agricultural Impacts of Ethanol and Biodiesel Expansion, University of Tennessee, Department of Agricultural and Resource Economics, 2006, http://beag.ag.utk.edu/pub/Ethanolagimpacts.pdf.
[18]  D. Swenson, “Appendix I: Biofuel Industry Economic Impacts and Analysis, in Renewable Fuels Roadmap and Sustainable Biomass Feedstock Supply for New York,” 2011 Update to the Final Report, prepared by Wojnar, October 2011, http://www.nyserda.ny.gov/Publications/Research-and-Development-Technical-Reports/Biomass-Solar-Wind-Reports/Renewable-Fuels-Roadmap.aspx?sc_database=web.
[19]  C. Hart, D. Otto, and M. Hudak, “Economic Impacts of the Ethanol Industry in Iowa and the U.S. Research Report, Community Vitality Center,” May 2012, http://www.cvcia.org/files/CVC-Ethanol-Report-8-9-2012.pdf.
[20]  J. L. Outlaw and J. W. Richardson, “Economic impact of the current and potential biodiesel industry in Texas,” Tech. Rep., Biodiesel Coalition of Texas, 2008, http://biodieselcoalitionoftexas.org/documents/TAMU%20AFPC%20Biodiesel%20Economic%20Impact%20Study.pdf.
[21]  F. L. Leistritz and N. M. Hodur, “Biofuels: a major rural economic development opportunity,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 6, pp. 501–504, 2008.
[22]  C. Bailey, J. F. Dyer, and L. Teeter, “Assessing the rural development potential of lignocellulosic biofuels in Alabama,” Biomass and Bioenergy, vol. 35, no. 4, pp. 1408–1417, 2011.
[23]  B. Aksoy, H. Cullinan, D. Webster et al., “Woody biomass and mill waste utilization opportunities in Alabama: transportation cost minimization, optimum facility location, economic feasibility, and impact,” Environmental Progress and Sustainable Energy, vol. 30, pp. 720–732, 2011.
[24]  Y. Gao, Evaluation of pre-processing and storage options in biomass supply logistics: a case study in East Tennessee [M.S. thesis], The University of Tennessee, Knoxville, Tenn, USA, 2011.
[25]  B. S. Wilson, Modeling cellulosic ethanol plant location using GIS [M.S. thesis], The University of Tennessee, Knoxville, Tenn, USA, 2009.
[26]  M. Wang, C. Saricks, and D. Santini, Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions, U.S. Department of Energy, Argonne National Laboratory, Center for Transportation Research, Argonne, IL, USA, 1999.
[27]  G. Tembo, F. M. Epplin, and R. L. Huhnke, “Integrative investment appraisal of a lignocellulosic biomass-to-ethanol industry,” Journal of Agricultural and Resource Economics, vol. 28, no. 3, pp. 611–633, 2003.
[28]  D. Olson and S. Lindall, IMPLAN Professional Software, Analysis, and Data Guide, Minnesota IMPLAN Group, Hudson, WI, USA, 1999.
[29]  D. Humbird, R. Davis, L. Tao, et al., “Process design economics for biochemical conversion of lignocellulosic biomass to Ethanol,” Tech. Rep. TP-5100-44764, NREL, 2011.
[30]  J. Menard, B. C. English, and K. Jensen, Economic Impacts of Agricultural and Forestry in Tennessee, Department of Agricultural Economics, University of Tennessee, 2011, http://aimag.ag.utk.edu/pubs/ei09/ReportText.pdf.
[31]  UT Extension, “Guideline Switchgrass Establishment and Annual Production Budgets 10 over Three Year Planning Horizon,” University of Tennessee, Institute of Agriculture, Department of Agricultural & Resource Economics, AE10-02, 2009, http://economics.ag.utk.edu/budgets/2009/Switchgrass2009.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133