%0 Journal Article %T Economic Impacts of Using Switchgrass as a Feedstock for Ethanol Production: A Case Study Located in East Tennessee %A Burton C. English %A Tun-Hsiang Edward Yu %A James A. Larson %A R. Jamey Menard %A Yuan Gao %J Economics Research International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/138485 %X One of the major motivations to establish a biobased energy sector in the United States is to promote economic development in the rural areas of the nation. This study estimated the economic impact of investing and operating a switchgrass-based ethanol plant in East Tennessee. Applying a spatially oriented mixed-integer mathematical programming model, we first determined the location of biorefinery, feedstock draw area, and the resources used in various feedstock supply systems by minimizing the total plant gate cost of feedstock. Based on the model output, an input-output model was utilized to determine the total economic impact, including direct, indirect, and induced effects of feedstock investment and annual production in the study region. Moreover, the economic impact of ethanol plant investment and annual conversion operation was analyzed. Results suggest that the total annual expenditures in an unprotected large round bale system generated a total $92.5 million in economic output within the 13 counties of East Tennessee. In addition, an estimated $234 million in overall economic output was generated through the operation of the biorefinery. This research showed that the least-cost configuration of the feedstock supply chain influenced the levels and types of economic impact of biorefinery. 1. Introduction The Energy Independence and Security Act of 2007 mandates 136 billion liters of biofuels to be produced annually by the year 2022 with 61 billion liters coming from cellulosic sources [1]. A major source of feedstock required to meet the mandate is lignocellulosic biomass (LCB). As indicated in two recent studies, the United States is capable of producing over a billion tons of LCB annually [2, 3]. Produced from dedicated energy crops, crop and forest residues, and municipal solid waste streams, LCB can play a significant role in the production of biobased fuels, power, and products in the United States. The Roadmap for Bioenergy and Biobased Products in the United States [4] indicates that the development of a biobased industrial sector using LCB feedstock in the United States can reduce dependence on imported petroleum, add to the diversity of energy sources, enhance energy security, improve the balance of trade, reduce carbon emissions, increase carbon sequestration, and stimulate economic growth in rural areas. This research evaluates the potential economic impacts of locating a switchgrass-to-ethanol biorefinery in rural East Tennessee, USA. Switchgrass is a strong candidate as a dedicated energy crop for biofuel production because it is a %U http://www.hindawi.com/journals/ecri/2013/138485/