Monitoring and warning of geological disasters accurately and in a timely fashion would dramatically mitigate casualties and economic losses. This paper takes Lanzhou city as an example and designs a Web-based system, namely the information system for geological disaster monitoring and warning (ISGDMW). Presented are its framework, key developing technologies, database, and working flow. The information system adopts a Browser/Server (B/S) structure and has three-tier architecture, combining in-situ monitoring instruments, the wireless sensor network, WebGIS techniques and the grey system theory. The framework of the ISGDMW can be divided into three categories: (1) in-situ monitoring system, it aims to monitor geological disaster sites and get state information of geological disaster sites; (2) database, manage in-situ monitoring data, antecedent field investigating data and basic data; (3) analyzing and warning system, analyze in-situ monitoring data, understand the deformation trend of the potential geological disaster, and release disaster warning information to the public. The ISGDMW allow the processes of geological disaster monitoring, in-situ monitoring data analysis, geological disaster warning to be implemented in an efficient and quick way, and can provide scientific suggestions to commanders for quick response to the possibility of geological disaster. 1. Introduction To mitigate geological disaster, we should depend on both real-time in situ data and quick response to the possibility of geological disaster. WebGIS is the integrated product of geographic information system (GIS) and internet technologies; in WebGIS, the internet technologies are connected with GIS in order to take advantage of their special characteristics, such as easy usability, use of the GIS data such as input, adjustment, manipulation, analysis, and output of geographical information and to bring out related service on the internet. Whereas previous standalone GIS had restricted application capability on the network, the WebGIS makes it possible to retrieve and analyze spatial data through the web. The internet also provides a medium for processing georelated information with no location restrictions [1]. In addition, WebGIS promotes the sharing and synthesis of multisource data and enables widespread sharing of spatial data and geosciences models [2]. Therefore, WebGIS offers a powerful and advanced approach to prevent and mitigate geological disaster, and it has played a significant role in terms of transmitting catastrophe data, analyzing the disaster condition, and
References
[1]
S. Verma, R. K. Verma, A. Singh, et al., Advances in Computer Science, Engineering & Applications, Springer, Berlin, Germany, 2012.
[2]
C. Qu, H. Ye, and Z. Liu, “Application of WebGIS in seismological study,” Acta Seismologica Sinica, vol. 24, no. 1, pp. 97–106, 2002.
[3]
K. H. Kim, Y. Kawata, H. Kawakata, and R. Goto, “A study on the development and distribution of WebGIS-based flood hazard map,” Journal of Japan Society for Natural Disaster Science, vol. 23, no. 4, pp. 539–551, 2005.
[4]
F. Martinelli and C. Meletti, “A WebGIS application for rendering seismic hazard data in Italy,” Seismological Research Letters, vol. 79, no. 1, pp. 68–78, 2008.
[5]
V. Pessina and F. Meroni, “A WebGis tool for seismic hazard scenarios and risk analysis,” Soil Dynamics and Earthquake Engineering, vol. 29, no. 9, pp. 1274–1281, 2009.
[6]
F. C. Yu, C. Y. Chen, S. C. Lin, Y. C. Lin, S. Y. Wu, and K. W. Cheung, “A web-based decision support system for slopeland hazard warning,” Environmental Monitoring and Assessment, vol. 127, no. 1–3, pp. 419–428, 2007.
[7]
X. G. Li, A. M. Wang, and Z. M. Wang, “Stability analysis and monitoring study of Jijia River landslide based on WebGIS,” Journal of Coal Science and Engineering, vol. 16, no. 1, pp. 41–46, 2010.
[8]
S. Gabriele, G. D. Aquila, and F. Chiaravalloti, GeoSpatial Visual Analytics, Springer, Dordrecht, The Netherlands, 2009.
[9]
L. Martino, C. Ulivieri, M. Jahjah, and E. Loret, “Remote sensing and GIS techniques for natural disaster monitoring,” in Space Technologies for the Benefit of Human Society and Earth, pp. 331–382, Springer, Dordrecht, The Netherlands, 2009.
[10]
H. X. Lan, C. D. Martin, C. R. Froese et al., “A web-based GIS for managing and assessing landslide data for the town of Peace River, Canada,” Natural Hazards and Earth System Science, vol. 9, no. 4, pp. 1433–1443, 2009.
[11]
Z. Q. Ding and Z. H. Li, Geological Disaster and Prevention in Lanzhou City, Gansu Science and Technology Press, Lanzhou, China, 2009 (Chinese).
[12]
J. L. Deng, “Control problems of grey systems,” Systems and Control Letters, vol. 1, no. 5, pp. 288–294, 1982.
[13]
J. F. Chen, Z. G. Shi, S. H. Hong, and K. S. Chen, “Grey prediction based particle filter for maneuvering target tracking,” Progress in Electromagnetics Research, vol. 93, pp. 237–254, 2009.
[14]
E. Kayacan, B. Ulutas, and O. Kaynak, “Grey system theory-based models in time series prediction,” Expert Systems with Applications, vol. 37, no. 2, pp. 1784–1789, 2010.
[15]
Y. Y. Cao, “Modeling for grey forecasting of calamities in geography,” Youthgeogrnphers, vol. 2, pp. 6–11, 1987.
[16]
S. An, J. Yan, and X. Yu, “Grey-system studies on agricultural ecoengineering in the Taihu lake area, Jiangsu, China,” Ecological Engineering, vol. 7, no. 3, pp. 235–245, 1996.
[17]
H. V. Trivedi and J. K. Singh, “Application of grey system theory in the development of a runoff prediction model,” Biosystems Engineering, vol. 92, no. 4, pp. 521–526, 2005.
[18]
W. Gao, Computational Methods in Engineering & Science, Springer, Berlin, Germany, 2007.
[19]
P. Lu and M. S. Rosenbaum, “Artificial neural networks and grey systems for the prediction of slope stability,” Natural Hazards, vol. 30, no. 3, pp. 383–398, 2003.
[20]
C. C. Hsu and C. Y. Chen, “Applications of improved grey prediction model for power demand forecasting,” Energy Conversion and Management, vol. 44, no. 14, pp. 2241–2249, 2003.
[21]
Y. F. Wang, “Predicting stock price using fuzzy grey prediction system,” Expert Systems with Applications, vol. 22, no. 1, pp. 33–38, 2002.
[22]
J. L. Deng, “Introduction to grey system theory,” The Journal of Grey System, vol. 1, no. 1, pp. 1–24, 1989.
[23]
C. C. Wong, B. C. Lin, and C. T. Cheng, “Fuzzy tracking method with a switching grey prediction for mobile robot,” in Proceedings of the 10th IEEE International Conference on Fuzzy Systems, pp. 103–106, Melbourne, Australia, December 2001.
[24]
M. N. Papa, V. Medina, F. Ciervo, and A. Bateman, “Estimation of debris flow critical rainfall thresholds by a physically-based model,” Hydrology and Earth System Sciences Discussions, vol. 9, no. 11, pp. 12797–12824, 2012.
[25]
M. Bacchini and A. Zannoni, “Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy),” Natural Hazards and Earth System Science, vol. 3, no. 1-2, pp. 71–79, 2003.
[26]
B. Y. Tan and A. Y. Duan, “Study on prediction for rainstorm debris flow along mountain district railway,” Journal of Natural Disasters, vol. 4, no. 2, pp. 43–52, 1995 (Chinese).
[27]
H. Wu, L. Shao, and D. D. Lu, “The geological calamity and the rainstorm intensity in Lanzhou City,” Arid Meteorology, vol. 23, no. 1, pp. 63–67, 2005 (Chinese).