%0 Journal Article %T A WebGIS-Based Information System for Monitoring and Warning of Geological Disasters for Lanzhou City, China %A Fang Miao %A Qi Yuan %J Advances in Meteorology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/769270 %X Monitoring and warning of geological disasters accurately and in a timely fashion would dramatically mitigate casualties and economic losses. This paper takes Lanzhou city as an example and designs a Web-based system, namely the information system for geological disaster monitoring and warning (ISGDMW). Presented are its framework, key developing technologies, database, and working flow. The information system adopts a Browser/Server (B/S) structure and has three-tier architecture, combining in-situ monitoring instruments, the wireless sensor network, WebGIS techniques and the grey system theory. The framework of the ISGDMW can be divided into three categories: (1) in-situ monitoring system, it aims to monitor geological disaster sites and get state information of geological disaster sites; (2) database, manage in-situ monitoring data, antecedent field investigating data and basic data; (3) analyzing and warning system, analyze in-situ monitoring data, understand the deformation trend of the potential geological disaster, and release disaster warning information to the public. The ISGDMW allow the processes of geological disaster monitoring, in-situ monitoring data analysis, geological disaster warning to be implemented in an efficient and quick way, and can provide scientific suggestions to commanders for quick response to the possibility of geological disaster. 1. Introduction To mitigate geological disaster, we should depend on both real-time in situ data and quick response to the possibility of geological disaster. WebGIS is the integrated product of geographic information system (GIS) and internet technologies; in WebGIS, the internet technologies are connected with GIS in order to take advantage of their special characteristics, such as easy usability, use of the GIS data such as input, adjustment, manipulation, analysis, and output of geographical information and to bring out related service on the internet. Whereas previous standalone GIS had restricted application capability on the network, the WebGIS makes it possible to retrieve and analyze spatial data through the web. The internet also provides a medium for processing georelated information with no location restrictions [1]. In addition, WebGIS promotes the sharing and synthesis of multisource data and enables widespread sharing of spatial data and geosciences models [2]. Therefore, WebGIS offers a powerful and advanced approach to prevent and mitigate geological disaster, and it has played a significant role in terms of transmitting catastrophe data, analyzing the disaster condition, and %U http://www.hindawi.com/journals/amete/2013/769270/