High performance fibre reinforced concrete (HPFRC) is a modern structural material with a high potential and with an increasing number of structural applications. Structural design of HPFRC elements is based on the post-cracking residual strength provided by fibre reinforcement, and for structural use, a minimum mechanical performance of HPFRC must be guaranteed. To optimize the performance of HPFRC in structural members, it is necessary to establish the mechanical properties and the post-cracking and fracture behaviour in a univocal and reliable way. The best test methodology to evaluate the post-cracking and toughness properties of HPFRC is the beam bending test. Two different types of configurations are proposed: the three-point and the four-point bending tests. The overall focus of this paper is to evaluate the mechanical properties and the post-cracking and fracture behaviour of HPFRC, using the two different standard test procedures. To achieve these aims, plain and fibre concrete specimens were tested. All the test specimens were extensively instrumented to establish the strength properties, crack tip and crack mouth opening displacement, and post-cracking behaviour. The results of the two types of bending tests were critically analysed and compared to identify and highlight the differing effects of the bending load configurations on the mechanical parameters of HPFRC material. 1. Introduction High performance fibre reinforced concrete (HPFRC) is a composite material characterized by a cement matrix and discrete fibres. Fibres are active as soon as microcracks are formed in the concrete. The main advantage of adding fibres to concrete is that they generate a post-cracking residual tensile strength in combination with a large tensile strain. As such, the fibre reinforced concrete (FRC) and the HPFRC are characterized by substantial ductility and toughness. It is well known that the use of an adequate amount and an appropriate shape of steel fibres increases the tensile strength and the ductile behaviour of the concrete matrix. As the fibre volume content increases, the compressive [1–3] and the tensile post-peak behaviour improve as well as a greater fracture energy can be observed [4–6]. To optimize the structural design of HPFRC members, it is essential to know the mechanical and fracture properties of the material. These properties have to be evaluated on standard specimens and with standard recommendations. In the past, various types of specimens, testing procedures, and parameters have been proposed to analyse the post-cracking behaviour in
References
[1]
M. A. Mansur, M. S. Chin, and T. H. Wee, “Stress-strain relationship of high-strength fiber concrete in compression,” Journal of Materials in Civil Engineering, vol. 11, no. 1, pp. 21–29, 1999.
[2]
G. Campione and L. La Mendola, “Behavior in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement,” Cement and Concrete Composites, vol. 26, no. 6, pp. 645–656, 2004.
[3]
F. Bencardino, L. Rizzuti, G. Spadea, and R. N. Swamy, “Stress-strain behavior of steel fiber-reinforced concrete in compression,” Journal of Materials in Civil Engineering, vol. 20, no. 3, pp. 255–263, 2008.
[4]
M. T. Kazemi, F. Fazileh, and M. A. Ebrahiminezhad, “Cohesive crack model and fracture energy of steel-fiber-reinforced-concrete notched cylindrical specimens,” Journal of Materials in Civil Engineering, vol. 19, no. 10, pp. 884–890, 2007.
[5]
N. M. Long and R. Marian, “Investigation of fracture properties of steel fiber reinforced concrete,” in Proceeding of the 3rd ACF International Conference, ACF/VCA, pp. 854–861, 2008.
[6]
F. Bencardino, L. Rizzuti, G. Spadea, and R. N. Swamy, “Experimental evaluation of fiber reinforced concrete fracture properties,” Composites B, vol. 41, no. 1, pp. 17–24, 2010.
[7]
RILEM TC 162-TDF, “Test and design method for steel fibre reinforced concrete. σ-ε design method. Recommendation,” Materials and Structures, vol. 33, no. 226, pp. 75–81, 2000.
[8]
RILEM TC 162-TDF, “Test and design method for steel fibre reinforced concrete. Bending test. Final recommendation,” Materials and Structures, vol. 35, no. 253, pp. 579–582, 2002.
[9]
RILEM TC 162-TDF, “Test and design method for steel fibre reinforced concrete. σ-ε design method. Final recommendation,” Materials and Structures, vol. 36, no. 262, pp. 560–567, 2003.
[10]
UNI 11039-1, Steel Fibre Reinforced Concrete-Definitions, Classification and Designation, 2003.
[11]
UNI 11039-2, Steel Fibre Reinforced Concrete—Test Method for Determination of First Crack Strength and Ductility Indexes, 2003.
[12]
ASTM C 1550, Standard Test Method for Flexural Toughness of Fiber Reinforced Concrete (Using Centrally Loaded Round Panel), 2010.
[13]
ASTM C 1609, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), 2010.
[14]
ASTM C 1399, Standard Test Method for Obtaining Average Residual Strength of Fiber Reinforced Concrete, 2010.
[15]
EN 14651, Test method for metallic fibre concrete—Measuring the flexural tensile strength (limit of proportionality (LOP), residual). European Committee for Standardization, B-1050 Brussels, September 2007.
[16]
M. di Prisco, G. Plizzari, and L. Vandewalle, “Fiber reinforced concrete in the new FIB model code,” in Proceedings of the 3rd fib International Congress, Gaylord National Resort, May 2010.
[17]
CNR-DT 204, Guidelines for the Design, Construction and Production Control of Fiber Reinforced Concrete Structures, CNR, Rome, Italy, 2007.
[18]
Fib 55. Model code 2010. Bullettin 55. First complete draft 2010.
[19]
B. Parmentier, L. Vandewalle, and F. van Rickstal, “Evaluation of the scatter of the postpeak behaviour of fibre reinforced concrete in bending: a step toward reliability,” in Proceeding of the 7th RILEM International Symposium on Fibre Reinforced Concrete: Design and Applications (BEFIB '08), pp. 133–143, 2008.
[20]
R. Hameed, A. Turatsinze, F. Duprat, and A. Sellier, “Metallic fiber reinforced concrete: effect of fiber aspect ratio on the flexural properties,” Journal of Engineering and Applied Sciences, vol. 4, no. 5, pp. 67–72, 2009.
[21]
UNI EN 12390-3, Testing Hardened Concrete—Compressive Strength of Test Specimens, 2003.