This paper presents the design of ladder-type filters based on film bulk acoustic wave resonator (FBAR) in Ku-band. The proposed FBAR filter has an insertion loss of ?3?dB, out-of-band rejection of ?12?dB and 3?dB bandwidth of 1.0?GHz from 15?GHz to 16?GHz. Based on the characteristics of the FBAR filter, the expected characteristics of FBAR resonators are determined by using the 1D numerical analysis. This design proves that it is possible to design a wide-bandwidth FBAR filter in Ku-band. 1. Introduction Transceiver systems working in Ku-band frequency range of 12–18?GHz are primarily used for satellite communications and radars. Cost, area, and power consumption are the key figures of merit for such transceiver system. However, the literature shows that most of these transceivers are designed using low-temperature cofire ceramic (LTCC) technology and are relatively large in size and heavy due to the use of discrete components such as filter and separately located modules. The multilayer LTCC and the systems-on-package (SOP) implementations are capable of overcoming these issues by integrating active and passive components on one board. Various Ku-band filters have been reported in the literature using different designs and manufacturing methods such as defect ground structure (DGS), interdigital structure, coupled line filters, and couple strip line filters have been integrated using LTCC technology [1–3]. However, improvement in filter performance and better integration methods with microwave monolithic integrated circuit (MMIC) and radio frequency (RF) microelectromechanical systems (MEMS) technology as used in WiFi and WiMAX applications [4] can be used to improve integration and reduce power consumption. Film bulk acoustic wave resonator (FBAR) filter and FBAR diplexer designed using RF MEMS technology have been developed for WiFi and WiMAX applications [4]. Such MEMS components have shown better performance and higher integration level which can also be achieved in Ku-band transceivers using MEMS-based FBAR filters. Thin membrane-type resonator and solidly mounted resonator (SMR) are two types of FBARs based on acoustical isolation from the substrate [5]. Acoustical isolation achieved by air-gap is the preferred method to achieve high-quality ( ) factor using simpler fabrication methods [6]. The literature shows that AlN is the preferred material due to its moderate mechanical coupling factor, higher acoustic velocity, and higher value [7] at operating frequencies higher than 10?GHz. Surface acoustic wave (SAW) resonators whose resonance
References
[1]
M. F. Islam, M. A. Mohd. Ali, and B. Y. Majlis, “Ku-band bandpass filter using surface micromachined process,” in Proceedings of the Asia Pacific Microwave Conference (APMC '09), pp. 547–550, December 2009.
[2]
L. Chang-Ho, A. Sutono, H. Sangwoo et al., “A compact LTCC-based Ku-band transmitter module,” IEEE Transactions on Advanced Packaging, vol. 25, no. 3, pp. 374–384, 2002.
[3]
H. Su, M. Xing, Y. Li, and W. Li, “Design of a front-end of a Ku-band transceiver based on LTCC technology,” in Proceedings of the 11th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP '10), pp. 851–855, August 2010.
[4]
D. Kim, D. H. Kim, G. H. Baek et al., “An FBAR-and LTCC-based RF front-end module for Wi-Fi and WiMAX dual-mode systems,” Microwave and Optical Technology Letters, vol. 52, no. 3, pp. 753–757, 2010.
[5]
G. G. Fattinger, J. Kaitila, R. Aigner, and W. Nessler, “Thin film bulk acoustic wave devices for applications at 5.2?GHz,” in Proceedings of the IEEE Ultrasonics Symposium, pp. 174–177, October 2003.
[6]
H. C. Pineda, Thin Film bilk acoustic wave resonator-FBAR fabrication, heterogeneous integration with CMOS technologies, and sensor applications [Ph.D. thesis], Universite de Montpellier II, Montpellier, France; Universitat Autonoma de Barcelona, Barcelona,Spain, 2007.
[7]
K.-W. Kim, G.-Y. Kim, J.-G. Yook, and H.-K. Park, “Air-gap-type TFBAR-based filter topologies,” Microwave and Optical Technology Letters, vol. 34, no. 5, pp. 386–387, 2002.
[8]
K. Umeda, H. Kawamura, M. Takeuchi, and Y. Yoshino, “Characteristics of an AlN-based bulk acoustic wave resonator in the super high frequency range,” Vacuum, vol. 83, no. 3, pp. 672–674, 2008.
[9]
M. Hara, T. Yokoyama, T. Sakashita et al., “Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators,” Japanese Journal of Applied Physics, vol. 49, no. 7, Article ID 07HD13, 2010.
[10]
N. I. M. Nor, K. Shah, J. Singh, N. Khalid, and Z. Sauli, “Design and analysis of film bulk acoustic wave resonator in Ku-band frequency for wireless communication,” in Proceeding of SPIE, Active and Passive Smart Structures and Integrated Systems 2012, 83411R, vol. 8341, 2012.
[11]
F. Z. Bi and B. P. Barber, “Bulk acoustic wave RF technology,” IEEE Microwave Magazine, vol. 9, no. 5, pp. 65–80, 2008.
[12]
A. A. Shirakawa, J.-M. Pham, P. Jarry, and E. Kerhervé, “Design of FBAR filters at high frequency bands,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 17, no. 1, pp. 115–122, 2007.
[13]
M. Hara, T. Yokoyama, T. Sakashita, M. Ueda, and Y. Satoh, “A study of the thin film bulk acoustic resonator filters in several ten?GHz band,” in Proceedings of the IEEE International Ultrasonics Symposium (IUS '09), pp. 851–854, September 2009.
[14]
M. Hara, T. Yokoyama, M. Ueda, and Y. Satoh, “X-band filters utilizing AlN thin film bulk acoustic resonators,” in Proceedings of the IEEE Ultrasonics Symposium (IUS '07), pp. 1152–1155, October 2007.
[15]
T. Yokoyama, M. Hara, M. Ueda, and Y. Satoh, “K-band ladder filters employing air-gap type thin film bulk acoustic resonators,” in Proceedings of the IEEE International Ultrasonics Symposium (IUS '08), pp. 598–601, November 2008.
[16]
G. F. Perez-Sanchez and A. Morales-Acevedo, “Design of bulk acoustic wave resonators based on ZnO for filter applications,” in Proceedings of the 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE '09), pp. 1–6, November 2009.
[17]
O. Menéndez, P. De Paco, R. Villarino, and J. Parrón, “Closed-form expressions for the design of ladder-type FBAR filters,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 12, pp. 657–659, 2006.
[18]
C. Min-Chiang, H. Zi-Neng, P. Shih-Yung, Z. Wang, and C. S. Lam, “Modified BVD-equivalent circuit of FBAR by taking electrodes into account,” in Proceedings of the IEEE Symposium on Ultrasonics, pp. 973–976, October 2002.
[19]
J. Jianhua, L. Yinqiao, H. Sha, J. Zhou, Y. Fei, and F. Tan, “A compact LTCC Transmit Receive module at Ku-band,” in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT '10), pp. 1239–1241, May 2010.
[20]
R. Gilmore, C. Bruckner, and D. Dunn, “Ku-band MMIC transceiver for mobile satellite communications,” in Proceedings of the 21st European Microwave Conference, pp. 1261–1265, September 1991.
[21]
Z. Zhang, G. Zhao, X. Zeng, H. Sun, and X. Lv, “A transceiver for Ku band digital monopulse radar system,” in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT '10), pp. 979–982, May 2010.
[22]
A. Shirakawa, J. M. Pham, P. Jarry, E. Kerherve, and E. Hanna, “Ladder-type FBAR filter synthesis methodology,” in Proceedings of the 19th Conference on Design of Circuits and Integrated Systems (DCIS '04), pp. 519–523.
[23]
K. Kun-Wook, G. Myeong-Gweon, Y. Jong-Gwan, and P. Han-Kyu, “Resonator size effects on the TFBAR ladder filter performance,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 8, pp. 335–337, 2003.