全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bandwidth Extension of High Compliance Current Mirror by Using Compensation Methods

DOI: 10.1155/2014/274795

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to the huge demand of high-speed analog integrated circuits, it is essential to develop a wideband low input impedance current mirror that can be operated at low power supply. In this paper, a novel wideband low voltage high compliance current mirror using low voltage cascode current mirror (LVCCM) as a basic building block is proposed. The resistive compensation and inductive peaking methods have been used to extend the bandwidth of the conventional current mirror. By replacing conventional LVCCM in a high compliance current mirror with the compensated LVCCM, the bandwidth extension ratio of 3.4 has been achieved with no additional DC power dissipation and without affecting its other performances. The circuits are designed in TSMC 0.18?μm CMOS technology on Spectre simulator of Cadence. 1. Introduction In today’s electronics world, the demand of high-speed analog devices has increased tremendously due to the explosive growth of communication systems [1, 2]. Moreover, the importance of low power and low voltage analog and mixed-signal circuits is increasing with the need of portable electronics devices. Since the current-mode devices can operate at low voltage and has higher bandwidth than that of voltage-mode devices, these devices are becoming the first preference of designers for signal processing applications [3, 4]. Current mirror is one of the most widely used current-mode circuit in analog integrated circuits such as operational amplifiers, current-mode analog-to-digital and digital-to-analog data converters, artificial neural networks, current sensing circuits, current-mode filters, current conveyors, and translinear loops [5–10]. Current mirrors are basically used for current amplification, level shifting, biasing, and loading in a circuit. A current mirror should have low input impedance and high output impedance for proper functionality. Other desirable features of a current mirror include wide input and output current swings, high linearity, accurate current copy, and low standby power dissipation. But a conventional current mirror (i.e., a current mirror which consists of two MOS transistors) has low output impedance and high current transfer error. Cascoding of transistors improves the output impedance and accuracy, but it also increases the power supply requirement and decreases input/output compliances. Several low voltage current mirrors are reported in [11–14]. A low voltage cascode current mirror (LVCCM) is one of the efficient and simple current mirrors. It provides low input impedance and high output impedance with reduced power

References

[1]  S. S. Mohan, M. Del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 346–355, 2000.
[2]  S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2389–2396, 2004.
[3]  B.-D. Liu, C.-Y. Huang, and H.-Y. Wu, “Modular current-mode defuzzification circuit for fuzzy logic controllers,” Electronics Letters, vol. 30, no. 16, pp. 1287–1288, 1994.
[4]  H. Hassan, M. Anis, and M. Elmasry, “MOS current mode circuits: analysis, design, and variability,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 8, pp. 885–898, 2005.
[5]  M. H. Cohen and A. G. Andreou, “Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network,” IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 714–727, 1992.
[6]  C.-L. Chen, W.-L. Hsieh, W.-J. Lai, K.-H. Chen, and C.-S. Wang, “A high-speed and precise current sensing circuit with bulk control (CCB) technique,” in Proceedings of the 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS '08), pp. 283–287, September 2008.
[7]  C. Wang and R. Zhao, “Continuous-time current-mode current mirror band pass filters with improved leap-frog structure,” in Proceedings of the 1st International Congress on Image and Signal Processing (CISP '08), pp. 146–148, May 2008.
[8]  G. Souliotis and C. Psychalinos, “Current-mode linear transformation filters using current mirrors,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 6, pp. 541–545, 2008.
[9]  S. S. Rajput and S. S. Jamuar, “Low voltage, low power and high performance current conveyors for low voltage analog and mixed mode signal processing applications,” Analog Integrated Circuits and Signal Processing, vol. 41, no. 1, pp. 21–34, 2004.
[10]  E. Farshidi and H. Asiaban, “A new true RMS-to-DC converter using up-down translinear loop in CMOS technology,” Analog Integrated Circuits and Signal Processing, vol. 70, no. 3, pp. 385–390, 2012.
[11]  E. Bruun and P. Shah, “Dynamic range of low-voltage cascode current mirrors,” in Proceedings of the 1995 IEEE International Symposium on Circuits and Systems (ISCAS '95), pp. 1328–1331, May 1995.
[12]  A. Garimella, L. Garimella, J. Ramirez-Angulo, A. J. López-Martín, and R. G. Carvajal, “Low-voltage high performance compact all cascode CMOS current mirror,” Electronics Letters, vol. 41, no. 25, pp. 1359–1360, 2005.
[13]  F. Ledesma, R. Garcia, and J. Ramírez-Angulo, “Comparison of new and conventional low voltage current mirrors,” in Proceedings of the 45th Midwest Symposium on Circuits and Systems, pp. II49–II52, August 2002.
[14]  J. Ramírez-Angulo, R. G. Carvajal, and A. Torralba, “Low supply voltage high-performance CMOS current mirror with low input and output voltage requirements,” IEEE Transactions on Circuits and Systems II, vol. 51, no. 3, pp. 124–129, 2004.
[15]  R. G. Carvajal, J. Ramirez-Angulo, A. Lopez Martin, A. Torralba, J. Galan, et al., “The flipped voltage follower: a useful cell for low voltage low power circuit design,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 7, pp. 1276–1279, 2005.
[16]  L. Lee, R. M. Sidek, S. S. Jamuar, and S. Khatun, “Low voltage cascode current mirror in a 1.8?GHz variable gain low noise amplifier (VGLNA),” in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT '06), pp. 1097–1100, October 2006.
[17]  H. Sato, A. Hyogo, and K. Sekine, “A low voltage OTA using MOSFET in the triode region and cascode current mirror,” in Proceedings of the European Conference on Circuit Theory and Design, pp. III/453–III/456, September 2005.
[18]  Y. Cong and R. L. Geiger, “Cascode current mirrors with low input, output and supply voltage requirements,” in Proceedings of the Midwest Circuits and Systems Conference (MWSCAS '00), vol. 1, pp. 490–493, August 2000.
[19]  S. Javad Azhari, H. Faraji Baghtash, and K. Monfaredi, “A novel ultra-high compliance, high output impedance low power very accurate high performance current mirror,” Microelectronics Journal, vol. 42, no. 2, pp. 432–439, 2011.
[20]  T. Voo and C. Toumazou, “High-speed current mirror resistive compensation technique,” IEE Electronics Letters, vol. 31, no. 4, pp. 248–250, 1995.
[21]  M. Gupta and U. Singh, “A new flipped voltage follower with enhanced bandwidth and low output impedance,” Analog Integrated Circuits and Signal Processing, vol. 72, no. 1, pp. 279–288, 2012.
[22]  S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424–2438, 2006.
[23]  U. Singh and M. Gupta, “High frequency flipped voltage follower with improved performance and its application,” Microelectronics Journal, vol. 44, no. 12, pp. 1175–1192, 2013.
[24]  D. J. Comer, D. T. Comer, J. B. Perkins, K. D. Clark, and A. P. C. Genz, “Bandwidth extension of high-gain CMOS stages using active negative capacitance,” in Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems (ICECS '06), pp. 628–631, December 2006.
[25]  W. Sansen and Z. Y. Chang, “Feedforward compensation techniques for high-frequency CMOS amplifiers,” IEEE Journal of Solid-State Circuits, vol. 25, no. 6, pp. 1590–1595, 1990.
[26]  M. Gupta, P. Aggarwal, P. Singh, and N. K. Jindal, “Low voltage current mirrors with enhanced bandwidth,” Analog Integrated Circuits and Signal Processing, vol. 59, no. 1, pp. 97–103, 2009.
[27]  M. Ebrahimzadeh, “A low voltage, high quality factor floating gate tunable active inductor with independent inductance and quality factor tuning,” International Journal of Computer and Electrical Engineering, vol. 3, no. 2, pp. 180–183, 2011.
[28]  S. Adel Sedra and C. Kenneth Smith, Microelectronics Circuits, Oxford University Press, New York, NY, USA, 5th edition, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133