%0 Journal Article %T Bandwidth Extension of High Compliance Current Mirror by Using Compensation Methods %A Maneesha Gupta %A Urvashi Singh %A Richa Srivastava %J Active and Passive Electronic Components %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/274795 %X Due to the huge demand of high-speed analog integrated circuits, it is essential to develop a wideband low input impedance current mirror that can be operated at low power supply. In this paper, a novel wideband low voltage high compliance current mirror using low voltage cascode current mirror (LVCCM) as a basic building block is proposed. The resistive compensation and inductive peaking methods have been used to extend the bandwidth of the conventional current mirror. By replacing conventional LVCCM in a high compliance current mirror with the compensated LVCCM, the bandwidth extension ratio of 3.4 has been achieved with no additional DC power dissipation and without affecting its other performances. The circuits are designed in TSMC 0.18£¿¦Ìm CMOS technology on Spectre simulator of Cadence. 1. Introduction In today¡¯s electronics world, the demand of high-speed analog devices has increased tremendously due to the explosive growth of communication systems [1, 2]. Moreover, the importance of low power and low voltage analog and mixed-signal circuits is increasing with the need of portable electronics devices. Since the current-mode devices can operate at low voltage and has higher bandwidth than that of voltage-mode devices, these devices are becoming the first preference of designers for signal processing applications [3, 4]. Current mirror is one of the most widely used current-mode circuit in analog integrated circuits such as operational amplifiers, current-mode analog-to-digital and digital-to-analog data converters, artificial neural networks, current sensing circuits, current-mode filters, current conveyors, and translinear loops [5¨C10]. Current mirrors are basically used for current amplification, level shifting, biasing, and loading in a circuit. A current mirror should have low input impedance and high output impedance for proper functionality. Other desirable features of a current mirror include wide input and output current swings, high linearity, accurate current copy, and low standby power dissipation. But a conventional current mirror (i.e., a current mirror which consists of two MOS transistors) has low output impedance and high current transfer error. Cascoding of transistors improves the output impedance and accuracy, but it also increases the power supply requirement and decreases input/output compliances. Several low voltage current mirrors are reported in [11¨C14]. A low voltage cascode current mirror (LVCCM) is one of the efficient and simple current mirrors. It provides low input impedance and high output impedance with reduced power %U http://www.hindawi.com/journals/apec/2014/274795/