全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Growth and Nitrogen Uptake Kinetics in Cultured Prorocentrum donghaiense

DOI: 10.1371/journal.pone.0094030

Full-Text   Cite this paper   Add to My Lib

Abstract:

We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3?), ammonium (NH4+), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L?1 for NO3? and NH4+, 0.5–50 μmol N L?1 for urea, 0.5–100 μmol N L?1 for glu and cyanate, and 0.5–200 μmol N L?1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d?1 and 1.50±0.05 d?1, respectively). However, cultures grown on cyanate, NO3?, and NH4+ had lower half saturation constants (Kμ, 0.28–0.51 μmol N L?1). N uptake kinetics were measured in NO3?-deplete and -replete batch cultures of P. donghaiense. In NO3?-deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3?, NH4+, urea and algal amino acids; uptake was saturated at or below 50 μmol N L?1. In NO3?-replete batch cultures, NH4+, urea, and algal amino acid uptake kinetics were similar to those measured in NO3?-deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.

References

[1]  Anderson DM (1997) Turning back the harmful red tide. Nature 388: 513–514.
[2]  Wang J, Wu J (2009) Occurrence and potential risks of harmful algal blooms in the East China Sea. Science of the Total Environment 407: 4012–4021. doi: 10.1016/j.scitotenv.2009.02.040
[3]  Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science 4: 143–176. doi: 10.1146/annurev-marine-120308-081121
[4]  Glibert PM, Burkholder JM, Kana TM (2012) Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14: 231–259. doi: 10.1016/j.hal.2011.10.023
[5]  Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan WP, et al. (2008) Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8: 3–13. doi: 10.1016/j.hal.2008.08.006
[6]  Yan T, Zhou M, Zou J (2002) A national report of HABs in China. In: “Max” Taylor FJR, Trainer VL, editors. PICES Scientific Report No. 23, Harmful algal blooms in the PICES region of the North Pacific. pp. 21–33.
[7]  Lu S, Hodgkiss IJ (2004) Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia 512(1–3): 231–238. doi: 10.1023/b:hydr.0000020331.75003.18
[8]  Zhou M (2010) Environmental Settings and Harmful Algal Blooms in the Sea Area Adjacent to the Changjiang River Estuary. Coastal Environmental and Ecosystem Issues of the East China Sea, pp. 133–149 (Citable URI: http://hdl.handle.net/10069/23506).
[9]  Lu D, Goebel J (2001) Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu Sp. Nov. from the East China Sea. Chinese Journal of Oceanography and Limnology 19(4): 337–344. doi: 10.1007/bf02850738
[10]  Lu D, Goebel J, Qi Y, Zou J, Han X, et al. (2005) Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae 4(3): 493–505. doi: 10.1016/j.hal.2004.08.015
[11]  Li J, Glibert PM, Zhou M, Lu S, Lu D (2009) Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series 383: 11–26. doi: 10.3354/meps07975
[12]  Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of anthropogenic deposition and groundwater as ‘new’ nitrogen and other nitrogen sources. Limnology and Oceanography 42: 1154–1165. doi: 10.4319/lo.1997.42.5_part_2.1154
[13]  Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726. doi: 10.1007/bf02804901
[14]  Glibert PM, Burkholder JM (2006) The complex relationships between increasing fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. In: Granéli E, Turner J, editors. Ecology of harmful algae. Springer-Verlag, Berlin. pp. 341–354.
[15]  Zhou M, Shen Z, Yu R (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research 28: 1483–1489. doi: 10.1016/j.csr.2007.02.009
[16]  Li J, Glibert PM, Zhou M (2010) Temporal and spatial variability in nitrogen uptake kinetics during harmful dinoflagellate blooms in the East China Sea. Harmful Algae 9: 531–539. doi: 10.1016/j.hal.2010.03.007
[17]  Shen Z, Liu Q, Zhang S, Miao H, Zhang P (2003) A nitrogen budget of the Changjiang River catchment. Ambio 32(1): 65–69. doi: 10.1639/0044-7447(2003)032[0065:anbotc]2.0.co;2
[18]  Chai C, Yu Z, Song X, Cao X (2006) The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia 563: 313–328. doi: 10.1007/s10750-006-0021-7
[19]  Hu Z, Mulholland MR, Duan S, Xu N (2012) Effects of nitrogen supply and its composition on the growth of Prorocentrum donghaiense. Harmful Algae 13: 72–82. doi: 10.1016/j.hal.2011.10.004
[20]  Antia NJ, Harrison PJ, Oliveira L (1991) Phycological reviews: the role of dissolved organic nitrogen in phytoplankton nutrition, cell biology, and ecology. Phycologia 30: 1–89. doi: 10.2216/i0031-8884-30-1-1.1
[21]  Berman T, Bronk DA (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology 31: 273–305. doi: 10.3354/ame031279
[22]  Bronk DA, Steinberg D (2008) Nitrogen regeneration. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ, editors. Nitrogen in the marine environment. Academic Press. pp. 385–468.
[23]  Fu M, Wang Z, Li Y, Li R, Sun P, et al. (2009) Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability. Continental Shelf Research 29: 2178–2194. doi: 10.1016/j.csr.2009.08.010
[24]  Yuan X, Glibert PM, Xu J, Liu H, Chen M, et al. (2012) Inorganic and organic nitrogen uptake by phytoplankton and bacteria in Hong Kong waters. Estuaries and Coasts 35: 325–334. doi: 10.1007/s12237-011-9433-3
[25]  Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of Marine Invertebrate Animals. New York: Plenum Press. pp. 26–60.
[26]  Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press. pp. 173.
[27]  Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801. doi: 10.4319/lo.1969.14.5.0799
[28]  Cowie GL, Hedges JI (1992) Improved amino acid quantification in environmental samples: Charge-matched recovery standards and reduced analysis time. Marine chemistry 37: 223–238. doi: 10.1016/0304-4203(92)90079-p
[29]  Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992. doi: 10.4319/lo.1994.39.8.1985
[30]  Guillard RRL (1973) Division rates. In: Stein JR, editor. Handbook of phycological methods: culture methods and growth measurements. Cambridge: Cambridge University Press. pp. 289–311.
[31]  Monod J (1942) Recherches sur la coissance des cultures Bactériennes. 2nd ed. Hermann, Paris. pp. 211.
[32]  Mulholland MR, Lee C (2009) Peptide hydrolysis and the uptake of dipeptides by phytoplankton. Limnology and Oceanography 54(3): 856–868. doi: 10.4319/lo.2009.54.3.0856
[33]  Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, et al. (2008) Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae 8: 39–53. doi: 10.1016/j.hal.2008.08.017
[34]  Kana TM, Lomas MW, MacIntyre HL, Cornwell JC, Gobler CJ (2004) Stimulation of the brown tide organism, Aureococcus anophagefferens, by selective nutrient additions to in situ mesocosms. Harmful Algae 3: 377–388. doi: 10.1016/j.hal.2004.06.008
[35]  Dugdale RC, Wilkerson FP, Hogue VE, Marchi A (2007) The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal and Shelf Science 73: 17–29. doi: 10.1016/j.ecss.2006.12.008
[36]  Mulholland MR, Lomas MW (2008) N uptake and assimilation. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ, editors. Nitrogen in the marine environment. Academic Press. pp. 303–384.
[37]  Mulholland MR, Gobler CJ, Lee C (2002) Peptide hydrolysis, amino acid oxidation and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens. Limnology and Oceanography 47: 1094–1108. doi: 10.4319/lo.2002.47.4.1094
[38]  Yu J, Tang D, Oh Im-Sang, Yao L (2007) Response of harmful algal blooms to environmental changes in Daya Bay, China. Terrestrial Atmospheric and Oceanic Sciences 18(5): 1011–1027. doi: 10.3319/tao.2007.18.5.1011(oc)
[39]  Seeyave S, Probyn TA, Pitcher GC, Lucas MI, Purdie DA (2009) Nitrogen nutrition in assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis acuminata off the west coast of South Africa. Marine Ecology Progress Series 379: 91–107. doi: 10.3354/meps07898
[40]  Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, et al. (2010) Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean science journal 45 (2): 65–91. doi: 10.1007/s12601-010-0007-2
[41]  Monod J (1950) La technique de la culture continue, théorie et applications. Annales de Institute Pasteur Paris 79(4): 390–410. doi: 10.1016/b978-0-12-460482-7.50023-3
[42]  Guillard RRL, Kilham P, Jackson TA (1973) Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal ( = Cyclotella nana Hustedt). Journal of Phycology 9(3): 233–237. doi: 10.1111/j.1529-8817.1973.tb04086.x
[43]  Taylor GT, Gobler CJ, Sa?udo-Wilhelmy SA (2006) Speciation and concentrations of dissolved nitrogen as determinants of brown tide Aureococcus anophagefferens bloom initiation. Marine Ecology Progress Series 312: 67–83. doi: 10.3354/meps312067
[44]  Gobler CJ, Burson A, Koch F, Tang Y, Mulholland MR (2012) The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae 17: 64–74. doi: 10.1016/j.hal.2012.03.001
[45]  Healey FP (1980) Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbial Ecology 5(4): 281–286. doi: 10.1007/bf02020335
[46]  Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348. doi: 10.2307/1935608
[47]  Hu Z, Xu N, Duan S, Li A, Zhang C (2010) Effects of urea on the growth of Phaeocystis globosa, Scrippsiella trochoidea, Skeletonema costatum. Acta Scientiae Circumstantiae 30(6): 1265–1270 (In Chinese, with English abstract)..
[48]  Allen CM, Jones ME (1964) Decomposition of carbamoyl phosphate in aqueous solution. Biochemistry 3: 1238–1247. doi: 10.1021/bi00897a010
[49]  Eppley RW, Thomas WH (1969) Comparison of half-saturation constants for growth and nitrate uptake of marine phytoplankton. Journal of Phycology 5: 375–379. doi: 10.1111/j.1529-8817.1969.tb02628.x
[50]  Goldman JC, Glibert PM (1983) Kinetics of inorganic nitrogen uptake by phytoplankton. In: Carpenter EJ, Capone DG, editors. Nitrogen in the marine environment. Academic Press, New York. pp. 233–274.
[51]  Harrison PJ, Parslow JS, Conway HL (1989) Determination of nutrient uptake kinetic parameters: a comparison of methods. Marine Ecology Progress Series 52: 301–312. doi: 10.3354/meps052301
[52]  Herndon J, Cochlan WP (2007) Nitrogen utilization by the raphidophyte Heterosigma akashiwo: Growth and uptake kinetics in laboratory cultures. Harmful Algae 6: 260–270. doi: 10.1016/j.hal.2006.08.006
[53]  Cochlan WP, Harrison PJ (1991) Uptake of nitrate ammonium and urea by nitrogen-starved cultures of Micromonas-pusilla (Prasinophyeae): transient responses. Journal of Phycology 27: 673–679. doi: 10.1111/j.0022-3646.1991.00673.x
[54]  Cochlan WP, Herndon J, Kudela RM (2008) Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae 8: 111–118. doi: 10.1016/j.hal.2008.08.008
[55]  Fan C, Glibert PM, Burkholder JM (2003) Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimumin natural blooms and laboaratory cultures. Harmful Algae 2: 283–299. doi: 10.1016/s1568-9883(03)00047-7
[56]  Smith REH, Kalff J (1982) Size dependent phosphorus uptake kinetics and cell quota in phytoplankton. Journal of Phycology 18: 275–284. doi: 10.1111/j.1529-8817.1982.tb03184.x
[57]  Hein M, Pedersen MF, Sand-Jensen K (1995) Size-dependent nitrogen uptake in micro- and macroalgae. Marine Ecology Progress Series 118: 247–253. doi: 10.3354/meps118247
[58]  Maguer J-F, L'Helguen S, Madec C, Labry C, Le Corre P (2007) Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dynophyceae): effects of N-limited growth rate on nitrate and ammonium interactions. Journal of Phycology 43: 295–303. doi: 10.1111/j.1529-8817.2007.00334.x
[59]  Lomas MW, Glibert PM (1999) Interactions between NH4+ and NO3? uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology 133: 541–551. doi: 10.1007/s002270050494
[60]  Cochlan WP, Bronk DA (2003) Effects of ammonium on nitrate utilization in the Ross Sea: implications for f-ratio estimates. In: DiTullio GR, Dunbar RB, editors. Biogeochemistry of the Ross Sea. AGU Antarctic Research Series 78. pp. 159–178.
[61]  Jauzein C, Loureiro S, Garcés E, Collos Y (2008) Interactions between ammonium and urea uptake by five strains of Alexandrium catenella (Dinophyceae) in culture. Aquatic Microbial Ecology 53: 271–280. doi: 10.3354/ame01249
[62]  Lindehoff E, Granéli E, Glibert PM (2011) Nitrogen uptake kinetics of Prymnesium parvum (Haptophyte). Harmful Algae 12: 70–76. doi: 10.1016/j.hal.2011.09.001
[63]  Li J, Glibert PM, Alexander JA (2011) Effects of ambient DIN:DIP ratio on the nitrogen uptake of harmful dinoflagellate Prorocentrum minimum and Prorocentrum donghaiense in turbidistat. Chinese Journal of Oceanology and Limnology 29(4): 746–761. doi: 10.1007/s00343-011-0504-x
[64]  Cochlan WP, Price NM, Harrison PJ (1991) Effects of irradiance on nitrogen uptake by phytoplankton: comparison of frontal and stratified communities. Marine Ecology Progress Series 69: 103–116. doi: 10.3354/meps069103
[65]  Kudela RM, Cochlan WP (2000) Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquatic Microbial Ecology 21: 31–47. doi: 10.3354/ame021031
[66]  Collos Y, Gagne C, Laabir M, Vaquer A, Cecchi P, et al. (2004) Nitrogenous nutrition of Alexandrium catenella (Dinophyceae) in cultures and in Thau Lagoon, southern France. Journal of Phycology 40: 96–103. doi: 10.1046/j.1529-8817.2004.03034.x
[67]  Kudela R, Ryan J, Blakely M, Lane J, Peterson T (2008) Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7: 278–292. doi: 10.1016/j.hal.2007.12.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133