全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimal Resource Allocation and VCG Auction-Based Pricing for H.264 Scalable Video Quality Maximization in 4G Wireless Systems

DOI: 10.1155/2012/567217

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present novel schemes for optimal OFDMA bitrate allocation towards video quality maximization in H.264 scalable video coding (SVC)-based 4G wireless systems. We use the rate and quality models for video characterization of the SVC extension of the H.264/AVC and develop the framework for optimal scalable video transmission. Subsequently, we derive the closed form solution of the optimal H.264 scalable video quantization parameter for sum video quality maximization in unicast and multicast 4G WiMAX adaptive modulation and coding (AMC) scenarios. We also formulate a Vickrey-Clarke-Groves (VCG) auction-based time-frequency (TF) resource pricing scheme for dynamic bitrate allocation and simultaneous prevention of video quality degradation by malicious users for H.264-based scalable video transmission. Simulation results demonstrate that application of the proposed optimal 4G OFDMA schemes for unicast/multicast video quality maximization yield significantly superior performance in comparison to fixed rate video agnostic allocation. 1. Introduction The rapid rise in the demand for ubiquitous mobile broadband wireless access has spurred the development of 4G wireless standards such as LTE and WiMAX. These technologies provide high data rates and reliable wireless services to the users. A significant component of the 4G wireless traffic comprises of video and multimedia-based rich applications such as surveillance, multimedia streaming, mobile TV, and video conferencing. A typical 4G wireless communication scenario for the above-described applications is shown in Figure 1. The key challenge in 4G cellular networks in the context of video transmission is to support reliable video streaming over the erratic fading wireless channels. This fading nature can potentially result in intolerable jitter and latency resulting in poor end-user experience for the highly sensitive multimedia applications. The fading nature of the wireless channel can be successfully mitigated using orthogonal frequency division multiplexing (OFDM) [1, 2], thus ensuring inter-symbol interference free transmission across frequency-selective wireless channels. orthogonal frequency division for multiple access (OFDMA) is the multiple access technology based on OFDM in which different users (unicast) or groups of users (multicast) are allocated a fraction of the total subcarriers over a period of time. This is also known as time-frequency resource allocation in OFDMA systems. Figure 1: A wireless communication scenario. Supporting video applications on wireless links necessitates the

References

[1]  D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, New York, NY, USA, 2005.
[2]  A. Goldsmith, Wireless Communications, Cambridge University Press, New York, NY, USA, 2005.
[3]  H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007.
[4]  Y. Wang, Y.-Q. Zhang, and J. Ostermann, Video Processing and Communications, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.
[5]  Y. Wang, Z. Ma, and Y. F. Ou, “Modeling rate and perceptual quality of scalable video as functions of quantization and frame rate and its application in scalable video adaptation,” in Proceedings of the 17th International Packet Video Workshop (PV '09), pp. 1–9, Seattle, Wa, USA, May 2009.
[6]  Y. N. Lin, C. W. Wu, Y. D. Lin, and Y. C. Lai, “A latency and modulation aware bandwidth allocation algorithm for WiMAX base stations,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '08), pp. 1408–1413, April 2008.
[7]  S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast in WiMAX networks,” in Proceedings of the IEEE 27th Conference on Computer Communications (INFOCOM '08), pp. 1579–1587, April 2008.
[8]  J. Kim, J. Cho, and H. Shin, “Resource allocation for scalable video broadcast in wireless cellular networks,” in Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob '05), vol. 2, pp. 174–180, August 2005.
[9]  JSVM, “Joint Scalable Video Model software, Joint Video Team, version 9.19.7”.
[10]  Y. F. Ou, T. Liu, Z. Zhao, Z. Ma, and Y. Wang, “Modeling the impact of frame rate on perceptual quality of video,” in Proceedings of the 15th IEEE International Conference on Image Processing (ICIP '08), pp. 689–692, October 2008.
[11]  S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, NY, USA, 2004.
[12]  N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Algorithmic Game Theory, Cambridge University Press, New York, NY, USA, 2007.
[13]  “Lecture on VCG procedures,” http://www.cse.iitd.ernet.in/~rahul/cs905/lecture10/index.html.
[14]  V. Srivastava, J. Neel, A. Mackenzie et al., “Using game theory to analyze wireless ad hoc networks,” IEEE Communications Surveys Tutorials, vol. 7, no. 4, pp. 46–56, 2005.
[15]  C. Sacchi, F. Granelli, and C. Schlegel, “A qoe-oriented strategy for ofdma radio resource allocation based on min-mos maximization,” IEEE Communications Letters, vol. 15, no. 5, pp. 494–496, 2011.
[16]  W. S. Lin, H. V. Zhao, and K. J. R. Liu, “Attack-resistant cooperation strategies in P2P live streaming social networks,” in Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers (ASILOMAR '08), pp. 1373–1377, October 2008.
[17]  J. Hershberger and S. Suri, “Vickrey prices and shortest paths: what is an edge worth?” in Proceedings of the 42nd Annual Symposium on Foundations of Computer Science, pp. 252–259, October 2001.
[18]  D. C. Parkes and J. Shneidman, “Distributed implementations of Vickrey-Clarke-Groves mechanisms,” in Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS '04), pp. 261–268, July 2004.
[19]  J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.
[20]  “Standard test video sequences,” http://media.xiph.org/video/derf/.
[21]  M. Grant and S. Boyd, “CVX: matlab software for disciplined convex programming, version 1.21,” 2011, http://cvxr.com/cvx/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133