%0 Journal Article %T Optimal Resource Allocation and VCG Auction-Based Pricing for H.264 Scalable Video Quality Maximization in 4G Wireless Systems %A Shreyans Parakh %A Aditya K. Jagannatham %J Advances in Multimedia %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/567217 %X We present novel schemes for optimal OFDMA bitrate allocation towards video quality maximization in H.264 scalable video coding (SVC)-based 4G wireless systems. We use the rate and quality models for video characterization of the SVC extension of the H.264/AVC and develop the framework for optimal scalable video transmission. Subsequently, we derive the closed form solution of the optimal H.264 scalable video quantization parameter for sum video quality maximization in unicast and multicast 4G WiMAX adaptive modulation and coding (AMC) scenarios. We also formulate a Vickrey-Clarke-Groves (VCG) auction-based time-frequency (TF) resource pricing scheme for dynamic bitrate allocation and simultaneous prevention of video quality degradation by malicious users for H.264-based scalable video transmission. Simulation results demonstrate that application of the proposed optimal 4G OFDMA schemes for unicast/multicast video quality maximization yield significantly superior performance in comparison to fixed rate video agnostic allocation. 1. Introduction The rapid rise in the demand for ubiquitous mobile broadband wireless access has spurred the development of 4G wireless standards such as LTE and WiMAX. These technologies provide high data rates and reliable wireless services to the users. A significant component of the 4G wireless traffic comprises of video and multimedia-based rich applications such as surveillance, multimedia streaming, mobile TV, and video conferencing. A typical 4G wireless communication scenario for the above-described applications is shown in Figure 1. The key challenge in 4G cellular networks in the context of video transmission is to support reliable video streaming over the erratic fading wireless channels. This fading nature can potentially result in intolerable jitter and latency resulting in poor end-user experience for the highly sensitive multimedia applications. The fading nature of the wireless channel can be successfully mitigated using orthogonal frequency division multiplexing (OFDM) [1, 2], thus ensuring inter-symbol interference free transmission across frequency-selective wireless channels. orthogonal frequency division for multiple access (OFDMA) is the multiple access technology based on OFDM in which different users (unicast) or groups of users (multicast) are allocated a fraction of the total subcarriers over a period of time. This is also known as time-frequency resource allocation in OFDMA systems. Figure 1: A wireless communication scenario. Supporting video applications on wireless links necessitates the %U http://www.hindawi.com/journals/am/2012/567217/