Using the langasite
crystal microbalance (LCM), the trends in film thickness produced by means of
the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas
and their mixed gas were observed at 600?C and evaluated by comparison with the information
from a transmission electron microscope (TEM). The crystalline silicon film
thickness from trichlorosilane gas was comparable to that of an amorphous
silicon carbide film from monomethylsilane gas. The film obtained from the gas
mixture was amorphous and was the thinnest in this study. Because the thickness
trend obtained by the LCM agreed with that by the TEM, the LCM is shown to be a
convenient evaluation tool for the behavior of various film deposition.
References
[1]
A. M. Rinaldi and D. Crippa, “Silicon Epitaxy (Editor: D. Crippa, D. L. Rode and M. Masi),” Chapter 1, Academic Press, San Diego, 2001, p. 1.
doi:10.1016/S0080-8784(01)80179-4
[2]
K. Maeda, “VLSI & CVD,” Maki Shoten, Tokyo, 1997.
[3]
D. Shen, H. Zhang, Q. Kang, H. Zhang and D. Yuan, “Oscillating Frequency Response of a Langasite Crystal Microbalance in Liquid Phases,” Sensors and Actuators B, Vol. 119, No. 1, 2006, pp. 99-104.
doi:10.1016/j.snb.2005.12.001
[4]
M. Schulz, J. Sauerwald, H. Seh H. Fritze and H. L. Tuller, “Defect Chemistry Based Design of Monolithic Langasite Structures for High Temperature Sensors,” Solid State Ionics, Vol. 184, No. 1, 2011, pp. 78-82.
doi:10.1016/j.ssi.2010.08.009
[5]
H. Habuka and K. Kote, “Development of Reactive Surface Preparation for Room Temperature Silicon Carbide Film Deposition from Monomethylsilane Gas,” Japanese Journal of Applied Physics, Vol. 50, No. 9, 2011, pp. 1-4.
doi:10.1143/JJAP.50.096505
[6]
H. Habuka and Y. Tanaka, “Langasite Crystal Microbalance Used for in-Situ Monitoring of Amorphous Silicon Carbide Film Deposition,” ECS Journal of Solid State Science and Technology, Vol. 1, No. 2, 2012, pp. 62-65.
doi:10.1149/2.006202jss
[7]
H. Habuka, T. Nagoya, M. Mayusumi, M. Katayama, M. Shimada and K. Okuyama, “Model on Transport Phenomena and Epitaxial Growth of Silicon Thin Film in SiHCl3-H2 System under Atmospheric Pressure,” Journal of Crystal Growth, Vol. 169, No. 1, 1996, pp. 61-72.
doi:10.1016/0022-0248(96)00376-4
[8]
H. Habuka, T. Otsuka and M. Katayama, “In Situ Cleaning Method for Silicon Surface Using Hydrogen Fluoride Gas and Hydrogen Chloride Gas in a Hydrogen Ambient,” Journal of Crystal Growth, Vol. 186, No. 1, 1998, pp. 104-112. doi:10.1016/S0022-0248(97)00469-7
[9]
H. Habuka, Y. Ando and M. Tsuji, “Room Temperature Process for Chemical Vapor Deposition of Silicon Carbide Thin Film Using Monomethylsilane Gas,” Surface and Coatings Technology, Vol. 206, No. 1, 2011, pp. 1503-1506. doi:10.1016/j.surfcoat.2011.09.037
[10]
H. Habuka H. Ohmori and Y. Ando, “Silicon Carbide Film Deposition at Low Temperatures Using Monomethylsilane Gas,” Surface and Coatings Technology, Vol. 204, No. 1, 2010, pp. 1432-1437.
doi:10.1016/j.surfcoat.2009.09.044
[11]
H. Habuka and Y. Ando, “Mechanism of Silicon Carbide Film Deposition at Room Temperature Using Monomethylsilane Gas,” Journal of The Electrochemical Society, Vol. 158, No. 4, 2011, pp. H352-H357.
doi:10.1149/1.3545071
[12]
H. Habuka, M. Watanabe, Y. Miura, M. Nishida and T. Sekiguchi, “Polycrystalline Silicon Carbide Film Deposition Using Monomethylsilane and Hydrogen Chloride Gases,” Journal of Crystal Growth, Vol. 300, No. 1, 2007, pp. 374-381. doi:10.1016/j.jcrysgro.2007.01.003
[13]
H. Habuka, M. Watanabe, M. Nishida and T. Sekiguchi, “Polycrystalline Silicon Carbide Film Deposition Using Monomethylsilane and Hydrogen Chloride Gases,” Surface and Coatings Technology, Vol. 201, No. 1, 2007, pp. 8961-8965. doi:10.1016/j.surfcoat.2007.04.023
[14]
G. Sauerbrey, “Verwendung von Schwingquarzen zur W?gung dünner Schichten und zur Mikrow?gung,” Zeitschrift fur Physik, Vol. 155, No. 2, 1959, pp. 206-222.
doi:10.1007/BF01337937
[15]
K. Senthil, H. Nakazawa and M. Suemitsu, “Adsorption and Desorption Kinetics of Organosilanes at Si(001) Surfaces,” Japanese Journal of Applied Physics, Vol. 42, No. 11, 2003, pp. 6804-6808. doi:10.1143/JJAP.42.6804