|
A 10-bit, 200MS/s CMOS Pipeline ADC using new shared opamp architectureKeywords: Analog to Digital converter (ADC) , opamp sharing , high speed , low power , memory effect , pipeline Abstract: A 10 bit opamp-sharing pipeline analog-to-digital converter (ADC) using a novel mirror telescopic operational amplifiers (opamp) with dual nmos differential inputs is presented. Reduction of power and area is achieved by completely merging the front-end sample-and-hold amplifier (SHA) into the first multiplying digital-to-analog converter (MDAC) using the proposed opamp. Transistors in the opamp are always biased in saturation to avoid increase of settling time due to opamp turn-on delays. The design targets 0.18um CMOS process for operation, at 200MS/s from a 1.8V supply. The simulation results show the SNDR and SFDR of 59.45dB and 68.69dB, respectively, and the power consumption of 35.04mW is achieved
|