|
Proteome Science 2010
Quantitative comparison of lipoprotein fractions derived from human plasma and serum by liquid chromatography-tandem mass spectrometryAbstract: Although the primary differences between the samples are found in fibrinogen proteins which are removed from serum, it of interest to note that, with respect to LDL-associated proteins, apolipoproteinB-100 was found at significantly higher levels in serum samples. Complement component 3 was found at significantly higher levels in serum-derived HDL fractions. Both of these proteins are known LDL- and HDL-associated proteins, respectively.Overall, the results from our study indicate that both plasma and serum samples are equally suited for proteomic studies, and provide similar results. These findings are particularly important for studies profiling proteomic differences in lipoprotein particle composition in a variety of disease conditions, including cardiovascular disease.Lipoproteins, as their name implies, are complex, globular aggregates of lipid and protein which circulate primarily in plasma/serum, and play a central role in the transport and metabolism of both endogenous and exogenous cholesterol and other lipids. It is a well established fact that, in general, low-density lipoprotein (LDL) levels are directly correlated with the risk for the development of cardiovascular disease, whereas high-density lipoprotein (HDL) levels are inversely correlated with this risk [1,2]. The role that these particles play in the development of atherosclerosis has sustained decades of interest in studies devoted to lipoprotein function and metabolism. As LDL and HDL are composed of roughly twenty-two percent and fifty percent protein, respectively, there is recognition of the fact that the protein component of these particles is largely responsible for carrying out their various functions. Many efforts have been focused on the elucidation of the proteomes (the protein components) of both LDL and HDL [3-7]. Tremendous advances in the field of mass spectrometry have allowed for the identification of a vast array of proteins, many of which were previously not known to associate w
|