|
Proteome Science 2010
A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier propertiesAbstract: A total of 215 protein spots (corresponding to 130 distinct proteins) were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin) and constitutes valuable evidence for predictions based on genome annotation.Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.The endothelia of different organs are remarkably heterogeneous but do present many common functional and morphological features. Given the endothelium's strategic position between the blood and the tissues, this cell layer (i) closely controls the transport of plasma molecules (via bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis), (ii) regulates vascular tone, (iii) synthesises and secretes a wide variety of factors and (iv) is involved in the regulation of inflammation, haemostasis, thrombosis and immunity. It is now also generally accepted that the specific ultrastructure of capillaries in the brain, retina, kidney and liver governs the specialized physiological properties of these respective endothelia [1]. In the brain, the blood-brain barrier (BBB) separates the brain microvasculature from the peripheral microvasculature. The BBB constitutes a physical and metabolic barrier which tightly regulates blood-brain exchanges of ions, small molecules and proteins and is involved in the recruitment of immune cells prio
|