全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plant Methods  2011 

FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars

DOI: 10.1186/1746-4811-7-9

Keywords: Bioenergy, heat value, intraspecific variation, lignin, high throughput method, FTIR spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260 to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR) unit to measured values of lignin or energy contents. The best models with high coefficients of determination (R2 (calibration) = 0.91 and 0.90; R2 (cross-validation) = 0.81 and 0.79) and low root mean square errors of cross validation (RMSECV = 0.77% and 62 J g-1) for lignin and energy determination, respectively, were obtained after data pre-processing and automatic wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively.These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin and energy estimations in large data sets. Our study revealed that the intra-specific variations in lignin and energy contents were unrelated to each other and that the lignin content, therefore, was no predictor of the energy content. Employing principle component analyses we showed that factor loadings for the energy content were mainly associated with carbohydrate ring vibrations, whereas those for lignin were mainly related to aromatic compounds. Therefore, our analysis suggests that it may be possible to optimize the energy content of trees without concomitant increase in lignin.There is an increasing demand for the production of fast-growing woody plants such as poplars as a sustainable resource for the production of biofuels, heat or electricity as well as for pulp and paper production. However, efficient wood utilization is strongly affected by the lignification of the cell wall. Lignin is an intensely cross-linked hete

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133