This paper deals with the monitoring of power transistor current subjected to radio-frequency interference. In particular, a new current sensor with no connection to the power transistor drain and with improved performance with respect to the existing current-sensing schemes is presented. The operation of the above mentioned current sensor is discussed referring to time-domain computer simulations. The susceptibility of the proposed circuit to radio-frequency interference is evaluated through time-domain computer simulations and the results are compared with those obtained for a conventional integrated current sensor.
References
[1]
Murari, B.; Bertotti, F. Smart Power ICs; Springer: Berlin, Germany, 1995.
[2]
Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer: New York, NY, USA, 2008.
[3]
Richelli, A. Increasing EMI immunity in novel low-voltage CMOS OpAmps. IEEE Trans. EMC 2012, 54, 947–950.
[4]
Fiori, F. Susceptibility of CMOS voltage comparators to radio frequency interference. IEEE Trans. EMC 2012, 54, 434–442.
[5]
Aiello, O.; Fiori, F. On the susceptibility of embedded thermal shutdown circuit to radio frequency interference. IEEE Trans. EMC 2012, 54, 405–412.
[6]
Fiori, F.; Crovetti, P.S. Complementary differential pair with high immunity to RFI. IEEE Electron. Lett. 2002, 38, 1663–1664.
[7]
Redoute, J.M.; Steyaert, M. EMC of Analog Integrated Circuits; Springer: New York, NY, USA, 2010.
[8]
Ramdani, M.; Sicard, E.; Boyer, A.; Ben Dhia, S.; Whalen, J.J.; Hubing, T.H.; Coenen, M.; Wada, O. The electromagnetic compatibility of integrated circuits—Past, present and future. IEEE Trans. EMC 2009, 51, 78–100.
[9]
Bona, C.; Fiori, F.L. A new filtering technique that makes power transistors immune to EMI. IEEE Trans. Power Electron. 2011, 26, 2946–2955.
[10]
Jovic, O.; Stuermer, U.; Wilkening, W.; Maier, C.; Baric, A. Susceptibility of PMOS Transistors under High RF Excitations at Source Pin. Proceedings of the 20th International Zurich Symposium, Zurich, Swiss, 12–16 January 2009. Volume 58; pp. 401–404.
[11]
Patel, A.; Ferdowsi, M. Current sensing for automotive electronics? A survey. IEEE Trans. Veh. Technol. 2009, 58, 4108–4119.
[12]
Fai, L.C.; Mok, P.K.T. A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE J. Solid State Circ. 2004, 39, 3–14.
[13]
Chen, J.J.; Su, J.H.; Lin, H.Y.; Chang, C.C.; Lee, Y.; Chen, T.C.; Wang, H.C.; Chang, K.S.; Lin, P.S. Integrated current sensing circuits suitable for step-down DC-DC converters. IEEE Electron. Lett. 2004, 40, 200–202.
[14]
Leung, C.Y.; Mok, P.K.T.; Leung, K.N.; Chan, M. An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator. IEEE Trans. Circ. Syst. 2005, 52, 394–397.
[15]
Dake, T.; Ozalevli, E. A precision high-voltage current sensing circuit. IEEE Trans. Circ. Syst. 2008, 55, 1197–1202.
[16]
Yuan, B.; Lai, X. On-chip CMOS current-sensing circuit for DC-DC buck converter. IEEE Electron. Lett. 2009, 45, 102–103.
[17]
Mengmeng, D.; Hoi, L. An integrated speed- and accuracy-enhanced CMOS current sensor with dynamically biased shunt feedback for current-mode buck regulators. IEEE Trans. Circ. Syst. 2010, 57, 2804–2814.
[18]
Mengmeng, D.; Hoi, L.; Jin, L. A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak- and valley-current control. IEEE J. Solid State Circ. 2011, 46, 1928–1939.
[19]
Leung, C.Y.; Mok, P.K.T.; Leung, K.N. A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies. IEEE J. Solid State Circ. 2005, 40, 2265–2274.
[20]
Sail, E.; Vesterbacka, M. Thermometer-to-Binary Decoders for Flash Analog-to-Digital Converters. Proceedings of the 18th European Conference on Circuit Theory and Design, Seville, Spain, 26–30 August 2007; pp. 240–243.
[21]
Road Vehicles: Component Test Method for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy. Part 4: Bulk Current Injection (BCI); The International standard ISO 11452-4; ARRB Group Limited: Vermont South, Australia, 2001.