全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Protein Concentration Measurement System Using a Flexural Plate-Wave Frequency-Shift Readout Technique

DOI: 10.3390/s130100086

Keywords: FPW, frequency-shift readout circuit, peak detection, resonant frequency, immunoglobulin E

Full-Text   Cite this paper   Add to My Lib

Abstract:

A protein concentration measurement system with two-port flexural plate-wave (FPW) biosensors using a frequency-shift readout technique is presented in this paper. The proposed frequency-shift readout method employs a peak detecting scheme to measure the amount of resonant frequency shift. The proposed system is composed of a linear frequency generator, a pair of peak detectors, two registers, and a subtractor. The frequency sweep range of the linear frequency generator is limited to 2 MHz to 10 MHz according to the characteristics of the FPW biosensors. The proposed frequency-shift readout circuit is carried out on silicon using a standard 0.18 μm CMOS technology. The sensitivity of the peak detectors is measured to be 10 mV. The power consumption of the proposed protein concentration measurement system is 48 mW given a 0.1 MHz system clock.

References

[1]  Tung, H.-Y.; Tsang, K.-F.; Lam, K.-L.; Tung, H.-C. A Zero Configured HomeCare Gateway Using ZigBee. Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 9–12 January 2011; pp. 613–614.
[2]  Hesse, E.A.; Patton, S.A.; Huppert, J.S.; Gaydos, C.A. Using a rapid communication approach to improve a POC chlamydia test. IEEE Trans. Biomed. Eng. 2011, 58, 837–840.
[3]  Beyette, F.R.; Kost, G.J.; Gaydos, C.A.; Weigl, B.H. Point-of-care technologies for health care. IEEE Trans. Biomed. Eng. 2011, 58, 732–735.
[4]  Gould, H.J.; Sutton, B.J.; Beavil, A.J.; Beavil, R.L.; McCloskey, N.; Coker, H.A.; Fear, D.; Smurthwaite, L. The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol. 2003, 21, 579–628.
[5]  Erb, K.J. Helminths, allergic disorders and IgE-mediated immune responses: Where do we stand? Eur. J. Immunol. 2007, 37, 1170–1173.
[6]  Fitzsimmonsa, C.M.; McBeatha, R.; Josephc, S.; Jonesa, F.M.; Walterb, K.; Hoffmanna, K.F.; Kariukid, H.C.; Mwathae, J.K.; Kimanie, G.; Kabatereinef, N.B.; et al. Factors affecting human IgE and IgG responses to allergen-like schistosoma mansoni antigens: Molecular structure and patterns of in vivo exposure. Int. Arch. Allergy Immunol. 2007, 142, 40–50.
[7]  Maehashi, K.; Matsumoto, K. Label-free electrical detection using carbon nanotube-based biosensors. Sensors 2009, 9, 5368–5378.
[8]  Joana, D.; Prakash, D.; Vincent, G.; Salah, M.; Constantin, F.; Pierre-Andre, C.; Gyan, M.; Maryvonne, K.; Sylviane, P. Total and functional parasite specific IgE responses in plasmodium falciparum-infected patients exhibiting different clinical status. Malaria J. 2007, 6, 1–13.
[9]  Lequin, R.-M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418.
[10]  Su, X.; Zhang, J. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance for human IgE quantification. Sens. Actuators B Chem. 2004, 100, 309–314.
[11]  Su, X.; Chew, F.-T.; Li, S.-F. Piezoelectric quartz crystal based label-free analysis for allergy disease. Biosens. Bioelectron. 2000, 15, 629–639.
[12]  Marangoni, A.; Sambri, V.; Accardo, S.; Cavrini, F.; D'Antuono, A.; Moroni, A.; Storni, E.; Cevenini, R. Evaluation of LIAISON treponema screen, a novel recombinant antigen-based chemiluminescence immunoassay for laboratory diagnosis of syphilis. Clin. Diagn. Lab Immunol. 2005, 12, 1231–1234.
[13]  Njau, S.N. Adult sudden death caused by aspiration of chewing gum. Forensic. Sci. Int. 2004, 139, 103–106.
[14]  Wilbur, J.L.; Whitesides, G.M. Nanotachnology; Timp, G., Ed.; Springer-Verlag: New York, NY, USA, 1999.
[15]  Rosario-Castro, B.I.; Contes-de-Jesus, E.J.; Lebron-Colon, M.; Meador, M.A.; Scibioh, M.A.; Cabrera, C.R. Single-wall carbon nanotube chemical attachment at platinum electrodes. Appl. Surf. Sci. 2010, 257, 340–353.
[16]  Morales-Cruz, A.L.; Tremont, R.; Martinez, R.; Romanach, R.; Cabrera, C.R. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH3, OH, and CONHCH3 functionalized self-assembled monolayers. J. Appl. Surf. Sci. 2005, 241, 371–383.
[17]  Leng, S.-X.; McElhaney, J.E.; Walston, J.-D.; Xie, D.; Fedarko, N.S.; Kuchel, G.A. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J. Gerontol. Biol. Sci. Med. Sci. 2008, 63, 879–884.
[18]  Tan, C.-S.; Lim, D.-F.; Ang, X.-F.; Wei, J.; Leong, K.-C. Low temperature Cu-Cu thermo compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement. Microelectron. Reliab. 2010, 52, 321–324.
[19]  Liao, Q.-Q.; Yue, Z.-W.; Yang, D.; Wang, Z.-H.; Li, Z.-H.; Ge, H.-H.; Li, Y.-J. Self-assembledmonolayer of ammonium pyrrolidine dithiocarbamate on copper detected using electrochemical methods, surface enhanced Raman scattering and quantum chemistry calculations. Thin Solid Films 2011, 519, 6492–6498.
[20]  Innocenti, M.; Bellassai, S.; Bianchini, C.; Carla, F.F.; Loglio, L.; Polonia, F.; Vizza, M.; Foresti, L. Confined electrodeposition using a template-assisted procedure based on the selective desorption of a short chain thiol from a binary self-assembled monolayer formed on Ag(111). Electrochim. Acta 2010, 55, 2550–2554.
[21]  Tsai, M.-Y.; Lin, J.-C. Preconditioning gold substrates influences organothiol self-assembled monolayer (SAM) formation. J. Colloid Interface Sci. 2001, 238, 259–266.
[22]  Yoon, S.-H.; Park, J.-H.; Shen, D.; Kim, D.-J. Flexural Plate Wave MEMS Device as a Biosensor Platform. Proceedings of the 2007 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Springfield, MA, USA, 3–6 June 2007; 3, pp. 1–8.
[23]  Ballantine, D.S.; White, R.M.; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Zellers, E.T.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Application; Academic Press: San Diego, CA, USA, 1997; pp. 36–144.
[24]  Onen, O.; Ahmad, A.A.; Guldiken, R.; Gallant, N.D. Surface modification on acoustic wave biosensors for enhanced specificity. Sensors 2012, 12, 12317–12328.
[25]  Pyun, J.C.; Beutel, H.; Meyer, J.U.; Ruf, H.H. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosens. Bioelectron. 1998, 13, 839–845.
[26]  Huang, I.-Y.; Lee, M.-C. Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies. Sens. Actuators B Chem. 2008, 132, 340–348.
[27]  Huang, I.-Y.; Lee, M.-C. Development of a Novel Flexural Plate Wave Biosensor for Immunoglobulin-E Detection by Using SAM and MEMS Technologies. Proceedings of the 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006; pp. 70–73.
[28]  Razavi, B. Principles of Data Conversion System Design; IEEE Press: Piscataway, NJ, USA, 1995.
[29]  Chang, C.-C.; Kuo, T.-H. A 14 bit 100 MS/s Current-Steering DAC with a Low Cost Self-Calibration Structure. M.Sc. Dissertation, Nation Cheng Kung University, Tainan, Taiwan, 2007.
[30]  Lima, J.A.D. A linearly-tunable OTA-C sinusoidal oscillator for low-voltage applications. IEEE Int. Symp. Circ. Syst. 2002, 2, 408–411.
[31]  Chang, W.-Y.; Sung, P.-H.; Chu, C.-H.; Shih, C.-J.; Lin, Y.-C. Phase detection of the two-port FPW sensor for biosensing. IEEE Sens. J. 2008, 8, 501–507.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133