|
Molecular Cancer 2005
Variation in transcriptional regulation of cyclin dependent kinase inhibitor p21waf1/cip1 among human bronchogenic carcinomasAbstract: Among BC samples (N = 21) p21 transcript abundance (TA) levels varied over two orders of magnitude with values ranging from 400 to 120,000 (in units of molecules/106 molecules β-actin). The p21 values in many BC were high compared to those observed in normal bronchial epithelial cells (BEC) (N = 18). Among all BC samples, there was no correlation between E2F1 and p21 TA but there was positive correlation between E2F1 and p73α (p < 0.001) TA. Among BC cell lines with inactivated p53 and wild type p73 (N = 7) there was positive correlation between p73α and p21 TA (p < 0.05). Additionally, in a BC cell line in which both p53 and p73 were inactivated (H1155), E2F1 TA level was high (50,000), but p21 TA level was low (470). Transiently expressed exogenous p73α in the BC cell line Calu-1, was associated with a significant (p < 0.05) 90% increase in p21 TA and a 20% reduction in E2F1 TA. siRNA mediated reduction of p73 TA in the N417 BC cell line was associated with a significant reduction in p21 TA level (p < 0.01).p21 TA levels vary considerably among BC patients which may be attributable to 1) genetic alterations in Rb and p53 and 2) variation in TA levels of upstream transcription factors E2F1 and p73. Here we provide evidence that p73 upregulates p21 TA in BC tissues and upregulated p21 TA may result from E2F1 upregulation of p73 but not from E2F1 directly.Cell cycle homeostasis in normal human bronchial epithelial cells (BEC) is highly regulated at the G1/S transition. In G1 phase of the cell cycle, formation of a heterodimeric complex between cyclin D and cyclin dependent kinases 4 or 6 (cdk 4,6) leads to the phosphorylation of the tumor suppressor retinoblastoma gene product (pRb) [1-3]. Phosphorylation causes conformational change of the pRb/E2F complex, followed by release, and activation of the E2F1, 2, and 3 transcription factors [4-6]. Free E2F proteins bind strongly to DNA and were first identified by their ability to transactivate the adenoviral E2 promoter
|