全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A theorem of Khintchine type

Keywords: Khintchine theorem , Borel--Cantelli lemma , approximation function , Euler's $ phi$-function , Dawson--Sankoff inequality , Lebesgue measure , Duffin--Schaeffer conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $ \psi : \mathbb{N} \to [0, \infty)$ be an approximation function with $ \sum_{q = 1}^ \infty q \psi (q)$ $ = \infty$ and the property that there exists $ \delta > 0$ such that $\psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and all $s \in {q, q+1, \ldots, 2q\}$. Then the set $$\left\{x \in (0,1) : \left|x - \frac p q \right| < \psi(q) \textrm {forinfinitely many reduced rationals }\frac p q \right\}$$ has Lebesgue measure one.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133