%0 Journal Article %T A theorem of Khintchine type %A Enrico Zoli %J Uniform Distribution Theory %D 2008 %I Mathematical Institute of the Slovak Academy of Sciences %X Let $ \psi : \mathbb{N} \to [0, \infty)$ be an approximation function with $ \sum_{q = 1}^ \infty q \psi (q)$ $ = \infty$ and the property that there exists $ \delta > 0$ such that $\psi(q) \geq \delta \psi(s)$ for all $q \in \mathbb{N}$ and all $s \in {q, q+1, \ldots, 2q\}$. Then the set $$\left\{x \in (0,1) : \left|x - \frac p q \right| < \psi(q) \textrm {forinfinitely many reduced rationals }\frac p q \right\}$$ has Lebesgue measure one. %K Khintchine theorem %K Borel--Cantelli lemma %K approximation function %K Euler's $ phi$-function %K Dawson--Sankoff inequality %K Lebesgue measure %K Duffin--Schaeffer conjecture %U http://www.boku.ac.at/MATH/udt/vol03/no1/Zoli08-1.pdf