全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discrepancy estimate of normal vectors

Keywords: Ergodic matrix , normal vector , discrepancy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A$ be an $s \times s$ invertible matrix with integer entries and with eigenvalues $|\lambda_i| > 1, i=1, \ldots,s$. In this paper we prove explicitly that there exists a vector $\alpha$, such that the discrepancy of the sequence $\{\alpha A^n\}_{n=1}^{N}$ is equal to $O(N^{-1} (\log N)^{2s+3})$ for $N \longrightarrow \infty$. This estimate can be improved no more than on the logarithmic factor.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133