%0 Journal Article %T Discrepancy estimate of normal vectors %A Mordechay B. Levin %A Irina L. Volinsky %J Uniform Distribution Theory %D 2008 %I Mathematical Institute of the Slovak Academy of Sciences %X Let $A$ be an $s \times s$ invertible matrix with integer entries and with eigenvalues $|\lambda_i| > 1, i=1, \ldots,s$. In this paper we prove explicitly that there exists a vector $\alpha$, such that the discrepancy of the sequence $\{\alpha A^n\}_{n=1}^{N}$ is equal to $O(N^{-1} (\log N)^{2s+3})$ for $N \longrightarrow \infty$. This estimate can be improved no more than on the logarithmic factor. %K Ergodic matrix %K normal vector %K discrepancy %U http://www.boku.ac.at/MATH/udt/vol03/no1/LevVol08-1.pdf