We present the design and the fabrication of a novel nanophotonic switch. The switch is a photonic T-junction in which a gold nano particle is being positioned in the junction using the tip of an atomic force microscope (AFM). The novelty of this switch is related to its ability to control the direction of wave that propagates along a photonic structure. The selectivity of the direction is determined by a gold nanoparticle having dimension of a few tens of nanometer. This particle can be shifted. The shift of the gold nano particle can be achieved by applying voltage or by illuminating it with a light source. The shifts of the particle, inside the air gap, direct the input beam ones to the left output of the junction and once to its right output. Three types of simulations have been done in order to realize the photonic T-junction, and they are as follows: photonic crystal structures, waveguide made out of PMMA, and a silicon waveguide. 1. Introduction Optical switches have wide usage in optics communication for various purposes including protection of an optical link [1, 2]. Reducing the dimensions of the switch can assist in its integration on a silicon chip together with other electro-optical and microelectronic processing devices that may be positioned on the chip as well. The recent development of nanotechnology fabrication capabilities allows realization of various types of nanophotonic devices on silicon chips [3–5]. Photonic structures cannot be modified after their fabrication process. Therefore modulators and switches have been developed in order to control propagation of light. Photonic structures such as single mode Y couplers are widely employed as power dividers [6, 7] and combiners in modulators [8], switches [9, 10], and interferometric devices. Several approaches have been proposed in order to control the direction of light. Photonic crystals utilizing liquid crystal orientation that can be changed by adjusting applied field [11] and photonic crystal composed of semiconductor that depends on temperature [12]. Usage of trapped nanoparticle in order to realize a nano photonic modulator has already been demonstrated before [13]. There the position of a nanoparticle that performed the modulation of the output light was controlled using external voltage command. In this paper we present a novel design of a nano photonic switch having a T-junction structure in which there is one input and two outputs. The energy of the input is diverted to one of the outputs by shifting a golden nanoparticle that is positioned in the junction from one side of
References
[1]
Z. Zalevsky, D. Mendlovic, E. Marom, et al., “Ultrafast all-optical switching,” Journal of Optical Networking, vol. 1, no. 5, pp. 170–183, 2002.
[2]
R. Appelman and Z. Zalevsky, “All-optical switching technologies for protection applications,” IEEE Communications Magazine, vol. 42, no. 11, pp. S35–S40, 2004.
[3]
P. Dainesi, A. Küng, M. Chabloz, et al., “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 660–662, 2000.
[4]
A. Liu, R. Jones, L. Liao, et al., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature, vol. 427, no. 6975, pp. 615–618, 2004.
[5]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5?Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Optics Express, vol. 15, no. 2, pp. 430–436, 2007.
[6]
Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Optics Letters, vol. 27, no. 6, pp. 388–390, 2002.
[7]
A. Klekamp, P. Kersten, and W. Rehm, “An improved single-mode Y-branch design for cascaded 1:2 splitters,” Journal of Lightwave Technology, vol. 14, no. 12, pp. 2684–2686, 1996.
[8]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.
[9]
A. Sharkawy, S. Shi, D. Prather, and R. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Optics Express, vol. 10, no. 20, pp. 1048–1059, 2002.
[10]
F. Sun, J. Yu, and S. Chen, “A optical switch based on plasma dispersion effect in silicon-on-insulator,” Optics Communications, vol. 262, no. 2, pp. 164–169, 2006.
[11]
H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Physical Review B, vol. 67, no. 7, pp. 731061–731064, 2003.
[12]
H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,” Optics Communications, vol. 219, no. 1–6, pp. 177–182, 2003.
[13]
O. Limon, L. Businaro, A. Gerardino, L. Bitton, A. Frydman, and Z. Zalevsky, “Fabrication of electro optical nano modulator on silicon chip,” Microelectronic Engineering, vol. 86, no. 4–6, pp. 1099–1102, 2009.
[14]
B. M. Nebeker, G. W. Starr, and E. D. Hirleman, “Light scattering from patterned surfaces and particles on surfaces,” in Optical Characterization Techniques for High-Performance Microelectronic Device Manufacturing II, vol. 2638 of Proceedings of SPIE, pp. 274–284, Austin, Tex, USA, 1995.
[15]
M. I. Mishchenko and L. D. Travis, “Light scattering by size/shape distributions of non-spherical particles of size comparable to a wavelength,” in Atmospheric Propagation and Remote Sensing, vol. 1968 of Proceedings of SPIE, pp. 118–129, September 1993.
[16]
L. Sung, G. W. Mulholland, and T. A. Germer, “Polarization of light scattered by particles on silicon wafers,” in Surface Characterization for Computer Disk, Wafers, and Flat Panel Displays, vol. 3619 of Proceedings of SPIE, pp. 80–89, San Jose, Calif, USA, 1999.
[17]
J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, vol. 4449 of Proceedings of SPIE, pp. 281–290, San Jose, Calif, USA, 2001.
[18]
J. Vargas-Ubera, D. Gale, and J. Felix-Aguilar, “The range of validity of the Fraunhofer approximation in the estimation of particle size distributions from light diffraction,” in 4th Iberoamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and Their Applications, vol. 4419 of Proceedings of SPIE, pp. 435–438, Tandil, Argentina, September 2001.
[19]
http://www.rsoftdesign.com/aboutUs.php/.
[20]
T. T. Alkeskjold, J. L?gsgaard, A. Bjarklev, et al., “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Optics Express, vol. 12, no. 24, pp. 5857–5871, 2004.
[21]
M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Optics Letters, vol. 28, no. 24, pp. 2506–2508, 2003.
[22]
P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” Journal of the Optical Society of America B, vol. 20, no. 11, pp. 2274–2284, 2003.
[23]
P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic crystal waveguide,” Optics Letters, vol. 29, no. 7, pp. 697–699, 2004.