%0 Journal Article %T Design and Fabrication of 1 2 Nanophotonic Switch %A Asaf Shahmoon %A Maoz Birenboim %A Aviad Frydman %A Zeev Zalevsky %J Journal of Nanotechnology %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/953212 %X We present the design and the fabrication of a novel nanophotonic switch. The switch is a photonic T-junction in which a gold nano particle is being positioned in the junction using the tip of an atomic force microscope (AFM). The novelty of this switch is related to its ability to control the direction of wave that propagates along a photonic structure. The selectivity of the direction is determined by a gold nanoparticle having dimension of a few tens of nanometer. This particle can be shifted. The shift of the gold nano particle can be achieved by applying voltage or by illuminating it with a light source. The shifts of the particle, inside the air gap, direct the input beam ones to the left output of the junction and once to its right output. Three types of simulations have been done in order to realize the photonic T-junction, and they are as follows: photonic crystal structures, waveguide made out of PMMA, and a silicon waveguide. 1. Introduction Optical switches have wide usage in optics communication for various purposes including protection of an optical link [1, 2]. Reducing the dimensions of the switch can assist in its integration on a silicon chip together with other electro-optical and microelectronic processing devices that may be positioned on the chip as well. The recent development of nanotechnology fabrication capabilities allows realization of various types of nanophotonic devices on silicon chips [3¨C5]. Photonic structures cannot be modified after their fabrication process. Therefore modulators and switches have been developed in order to control propagation of light. Photonic structures such as single mode Y couplers are widely employed as power dividers [6, 7] and combiners in modulators [8], switches [9, 10], and interferometric devices. Several approaches have been proposed in order to control the direction of light. Photonic crystals utilizing liquid crystal orientation that can be changed by adjusting applied field [11] and photonic crystal composed of semiconductor that depends on temperature [12]. Usage of trapped nanoparticle in order to realize a nano photonic modulator has already been demonstrated before [13]. There the position of a nanoparticle that performed the modulation of the output light was controlled using external voltage command. In this paper we present a novel design of a nano photonic switch having a T-junction structure in which there is one input and two outputs. The energy of the input is diverted to one of the outputs by shifting a golden nanoparticle that is positioned in the junction from one side of %U http://www.hindawi.com/journals/jnt/2010/953212/