|
On $ (J, p_n) $ summability of fourier seriesDOI: 10.5556/j.tkjm.32.2001.225-230 Abstract: In this paper we prove the following two theorems for $ | J, p_n | $ summability of fourier series, which generalizes many previous result: Theorem 1. If $$ Phi (t) = int_t^{pi} frac{phi (u)}{u} du = o { p (1- frac{1}{t} ) } ~~~~ (t o 0) $$ then the Fourier series for $ t = x $ is summable $ (J, p_n) $ to sum $ s $. Theorem 2. If $$ G(t) = int_t^{pi} frac{g(u)}{u} du = o { p(1-frac{1}{t}) } ~~~~ (t o 0) $$ then the differentiated Fourier series is summable $ (J, p_n) $ to the value $ C $.
|