%0 Journal Article %T On $ (J, p_n) $ summability of fourier series %A Satish Chandra %J Tamkang Journal of Mathematics %D 2001 %I Tamkang University %R 10.5556/j.tkjm.32.2001.225-230 %X In this paper we prove the following two theorems for $ | J, p_n | $ summability of fourier series, which generalizes many previous result: Theorem 1. If $$ Phi (t) = int_t^{pi} frac{phi (u)}{u} du = o { p (1- frac{1}{t} ) } ~~~~ (t o 0) $$ then the Fourier series for $ t = x $ is summable $ (J, p_n) $ to sum $ s $. Theorem 2. If $$ G(t) = int_t^{pi} frac{g(u)}{u} du = o { p(1-frac{1}{t}) } ~~~~ (t o 0) $$ then the differentiated Fourier series is summable $ (J, p_n) $ to the value $ C $. %U http://journals.math.tku.edu.tw/index.php/TKJM/article/view/378